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Electric vehicles have become more popular in the last few decades due to governmental 

regulations and environmental awareness. This increased demand has allowed manufacturers to 

explore new methods of controlling vehicle motion. One technique called torque vectoring 

allows independent electric motors to output different torques without the use of a mechanical 

differential. This process necessitates the use of a robust dynamic model of vehicle motion to 

better predict how a car will respond to changes in torque and to control the stability of the 

vehicle. This thesis presents equations of motion for two-wheel and four-wheel models of a 

vehicle and applies them to lane changes, turns, and vehicle roll. The models can be applied to a 

vehicle with torque vectoring capabilities to aid in the creation of a controls algorithm. 
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Chapter 1. INTRODUCTION  

Increasing interest in electric vehicles has encouraged manufacturers to experiment with new 

technologies and ideas. This section will cover the basics of a differential, briefly describe why 

electric vehicles gained popularity, and introduce the topic of torque vectoring to highlight the 

need for a vehicle dynamics model that can be used to increase the stability of the vehicle. 

1.1 MECHANICAL DIFFERENTIALS 

Mechanical differentials are used to give the inner and outer wheels of a vehicle different torque 

values. Different torque values are needed because the inner and outer wheels move at different 

speeds as a car turns around a corner. For example, the inner wheel travels in a circle with a smaller 

radius than the outer wheel when the car is making a turn. The mechanical differential consists of 

a series of gears and elements to allow for equal torque for straight paths and unequal torque for 

curved paths. However, mechanical differentials do not always distribute torque in an ideal 

manner. If the road conditions are icy or otherwise undesirable, torque distribution from the 

mechanical differential could cause the vehicle to behave erratically. With independent electric 

motors, torque vectoring becomes an important method to improve vehicle handling (Husain, 

2003).  

1.2 BRIEF HISTORY OF ELECTRIC VEHICLES 

The average vehicle consumer may consider electric vehicles to be a recent invention. However, 

electric vehicles were around since the late 1800’s. One interesting electric vehicle was produced 

by Krieger Company in 1897 which had a maximum speed of 15 miles per hour and a 50 mile per 

charge rate. Even though electric vehicles were available, they were not as popular because 
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electricity was difficult to access in rural areas. Electric vehicles became popular again when oil 

prices increased in the 1970’s as the government began promoting the technology. The push to 

create electric vehicles continued into the 1990’s as air quality standards began requiring vehicle 

manufacturers to sell zero-emission vehicles (Husain, 2003). 

1.3 TORQUE VECTORING 

There are various methods of controlling the torque values given to each wheel in the process of 

torque vectoring, but the method described here is purely an electrical one. Consider a vehicle with 

two electric motors which drive two wheels independently. In order to move in a straight- line path, 

there needs to be a controls algorithm to send signals between the motors and make the wheels 

move in harmony. This system has several advantages. Although the system may seem unstable at 

first, it has the capability to be more stable than a traditional vehicle with a mechanical differentia l. 

For example, road surface sensors can be added to the front of the test vehicle to allow the electric 

vehicle to sense a change in road condition and relay the information to a controls algorithm, which 

can give the rear wheels independent responses. This can cause the system to follow a more 

accurate path. An additional factor in favor of an electric torque vectoring system is that frictiona l 

clutches can be avoided, and less energy will be wasted as heat (Kato and Sawase, 2012). 
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Chapter 2. TWO-WHEEL MODEL OF A VEHICLE 

Torque vectoring is an appropriate method to control vehicle stability in difficult handling 

situations if a robust dynamics model is used to predict how the car will react to different torque 

values. This section goes over the two-wheel model of a vehicle, also known as the bicycle model, 

to predict how a car would handle in a turn.  

2.1 BASICS OF A TWO-WHEEL MODEL 

The simplest way to model a vehicle is to assume that the two front tires behave roughly the same 

and condense the effect of the two tires into one modeled tire. The rear tires can be treated in a 

similar fashion. This gives a vehicle with one tire in the front and one in the rear. This model 

involves several assumptions. First, it does not look at the rolling aspects of a vehicle, which makes 

the model different from a true representation of a two-wheeled object such as a bicycle or 

motorcycle. Second, the model assumes that there is no effect to the motion of the vehicle due to 

vibration of the suspension. In reality, suspension is extremely important in determining how the 

car will behave and makes a big impact on rider comfort. The two-wheel model does not consider 

the effect of aerodynamic forces. The model assumes a constant forward velocity is maintained by 

the vehicle. Lastly, the model assumes tires behave linearly. Tire modeling is one of the most 

difficult elements to add to a vehicle model, because the interaction between the road surface and 

the tire involves many factors such as roughness, tire pressure, contact surface, tire type, and more.  

 A depiction of the simplification made in modeling a four-wheeled vehicle as a two-

wheeled vehicle is shown in Fig 2.1. 
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Figure 2.1 Bicycle Model 

The two-wheel model is called a two-degree-of-freedom model because there are two state 

variables needed to describe its motion: the lateral velocity U and the yawing velocity r. A steering 

input of δ is applied to the front wheel. The small angle assumption is commonly used throughout 

the two-wheel model. The steering angle is assumed to be a small angle so that the longitud ina l 

velocity of the car, called W, is approximately equal to the total velocity V of the car.  

 There are several variables used in the two-wheel model, and they are shown in Table 2.1. 

Table 2.1 Two-Wheel Model Symbols 

Term Symbol 

Lateral velocity U 

Longitudinal velocity along length of car W 
Total velocity of car V  

Vehicle slip angle, body slip angle β 
Front slip angle αf 
Rear slip angle αr 

Front tire cornering stiffness Cαf 

Rear tire cornering stiffness Cαr 
Yawing velocity r 

Steering angle δ 
Ackermann steering angle δA 

Length of wheelbase L 
Distance from front of car to center of gravity a 

Distance from rear of car to center of gravity b 
Radius of path curvature R 

Angle of Rotation θ 
Center of Gravity CG 
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These variables will be explained in more detail as they appear in the derivation of the two-wheel 

model.  

2.2 CIRCULAR MOTION 

First consider an object moving in a circular path as shown in Fig. 2.2. The longitudinal velocity 

is 𝑣⃑ and the position vector from the center of the turn to the vehicle is 𝑟. 

 

Figure 2.2 Vehicle in Circular Path 

When a vehicle moves around a turn, it will have lateral acceleration towards the center of rotation 

due to the change in direction of the velocity vector according to Eqn. 2.1: 

 𝑎 = 
𝑑𝑉⃑⃑

𝑑𝑡
=  
 𝑉2

𝑅 
 (2.1) 

This equation can be derived by looking at instantaneous changes in velocity and location (Serway 

and Jewett, 2010). This equation shows that the circular path taken by the car is defined by the 

radius of the turn. However, the radius is not enough to define the location of the vehicle. To fully 

represent the motion of the vehicle, a coordinate system must be chosen. Two coordinate systems 

will be used in the two-wheel model. One will be fixed to the center of gravity of the car called 

the body-centered coordinate system. The other coordinate system will be the global coordinate 

system. These two coordinate systems can be related to one another by the angle of rotation, 
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denoted as θ. Refer to Fig. 2.3 to see the relationship. The distance from the center of the turn to 

the center of gravity of the vehicle is R, the global coordinates are X and Y, the body-centered 

coordinates are x and y, and the yaw rate of the vehicle is r.  

  

Figure 2.3 Global and Body-Centered Coordinate Systems 

 𝑋 = −𝑈 cos𝜃 −𝑉 sin 𝜃 (2.2) 

 𝑌 = 𝑉 cos𝜃 − 𝑈sin 𝜃   (2.3) 

The relationship between the global and body-centered coordinate systems is shown in Eqns. 2.2 

and 2.3. These can be found by noticing the small displacement θ shown in Fig. 2.3. 

2.3 VEHICLE STEERING 

Vehicle steering is a complex subject, although it may seem simple at first. The geometry of the 

turn varies depending on the speed and can be further complicated by adding in the effect of 

suspension components. However, there is useful information to be gained from a simple model. 

In assuming that the vehicle can be modeled as a two-wheeled vehicle, it is implied that the inner 

and outer radii of the tires are approximately the same as shown in Fig. 2.4. When a vehicle is in 

a turn, the center of gravity may not always be aligned by a perpendicular line to the center of the 

turn. In general, the tangent point is defined as the point on the vehicle where a perpendicular line 
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can be drawn from the car body to the center of the turn. The body slip angle (also known as the 

vehicle slip angle, attitude angle, or vehicle side slip angle) is defined by SAE standard J670 as 

the inverse tangent of the lateral velocity divided by the longitudinal velocity.  

 

Figure 2.4 Four-Wheel Model to Two-Wheel Model 

The tires deflect as they roll, and this deflection is characterized by the slip angle of the tire. The 

slip angle is defined as the angle from a line along the length of a tire to the tire velocity vector. 

Note that the body slip angle and tire slip angle have unusual names – they do not represent the 

loss of friction between the tire and the road surface. Instead, they represent where the velocity 

vector of the car or tire points.  

 Tire slip angles are important for representing centripetal forces acting on the vehicle. Tire 

slip angles are a measure of how much a tire deflects from a straight- line path. The tire can be 

thought of as a spring that deflects laterally and whose stiffness can be described by either the front 

or rear tire stiffness denoted as Cαf or Cαr. Like any spring, when small forces are applied, the 

spring will deflect a small amount. For a passenger vehicle, this deflection becomes negligible as 

the centripetal acceleration decreases. Around 35 miles per hour and below, the centripetal 
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acceleration is small enough to cause negligible impact on tire deflection. At low speeds, the lateral 

forces are due to the turning of the front tire and not due to the tire deflection. This also means that 

the rear axle becomes the tangent point in a turn, because the tires in the rear are assumed to deflect 

very little and there is no steering angle applied. In this situation, the steering angle is called the 

Ackermann steering angle as shown in Fig. 2.5 (Milliken, 1995). 

 

Figure 2.5 Low-Speed Ackermann Steering Angle 

The Ackermann steering angle can be solved for using the geometry of the turn (see Fig. 2.6). 

 

Figure 2.6 Ackermann Steering Angle 

The equation for finding the Ackermann steering angle is given by Eqn. 2.4. 
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 𝑡𝑎𝑛 𝛿𝐴 =
𝐿

𝑅𝑟
 ≈  

𝐿

𝑅
 (2.4) 

Using the small angle approximation, the resulting Eqn. 2.5 is derived. 

 𝛿𝐴 = 𝐿/𝑅 (2.5) 

Since the front wheel has a steering angle applied to it, the front wheel makes a different turn than 

the rear wheel. The front and rear wheels travel in circular paths of different radii. This difference 

is called off-tracking. Let the front wheel’s turn radius be Rf and the rear turn radius be Rr. 

Equations 2.6 and 2.7 show how to calculate the turn radii using the small angle assumption. 

 sin 𝛿𝐴 =
𝐿

𝑅𝑓
  ∴ 𝑅𝑓 =

𝐿

sin 𝛿𝐴
   (2.6) 

  tan𝛿𝐴 =
𝐿

𝑅𝑟
 ∴  𝑅𝑟= 

𝐿

tan𝛿𝐴
 (2.7) 

The off-tracking of the vehicle is the difference between Eqns. 2.6 and 2.7. The result is shown in 

Eqn. 2.8. 

 𝑅𝑂𝐹 = 𝑅𝑓 −𝑅𝑟 = 
𝐿

sin 𝛿𝐴
− 

𝐿

tan 𝛿𝐴
 (2.8) 

As an example, consider a car with a length of 2.77 meters in a tight four-meter radius turn. This 

gives an off-tracking of about one meter. This means that in a tight turn, even if the front wheels 

are able to navigate around the curb the rear tires may not because they travel in a circle that is one 

meter less than the front. 

 The body slip angles can be found in a similar manner. Consider Fig. 2.7, which shows the 

body slip angles of a car turning at low speed. Due to the low speed, the slip angles will be 

negligible and the rear axle will be in line with the turn. This means that the body slip angle will 

be zero in the back of the car. The body slip angle at the center of the car is given by Eqn. 2.9 and 

the body slip angle at the front of the car is given by Eqn. 2.10. 
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Figure 2.7 Body Slip Angles at Low Speed 

 𝛽 = tan−1
𝑏

𝑅𝑟
 ≈  

𝑏

𝑅
=  
𝑏

𝐿
𝛿𝐴 (2.9) 

 𝛽𝑓 = sin
−1
𝐿

𝑎
 ≈  

𝐿

𝑅
=  𝛿𝐴 (2.10) 

At higher velocities, the tires begin to deflect and generate lateral forces. The slip angles cause 

lateral forces on the tires, which in turn makes the tangent point move away from the rear axle (see 

Fig. 2.8). The geometry of the turn can be used to relate the steering angle to the Ackermann 

steering angle and the body slip angles of the vehicle (see Fig. 2.9). Notice that there is an added 

angle 𝛾 in the equation for the Ackermann steering angle because the center of gravity is not the 

tangent point. There are special cases when the center of gravity will be the tangent point. For a 

vehicle moving at a speed of about ten meters per second in a thirty-meter turn, the center of 

gravity will more closely act as the tangent point (Dixon, 2009). When the tangent point becomes 

the center of gravity, equations for the Ackermann steering angle become easier to determine. This 

simplified view is shown in Fig. 2.10. Although the tangent point will move along the length of 

the car during various maneuvers and at different points in time, generally speaking the tangent   
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Figure 2.8 Tangent Point Moving to Center of Gravity 

 

Figure 2.9 Geometric Relationships for Ackermann Steering Angle 

point is assumed to be the center of gravity. It is assumed that the distance translated by the tangent 

point along the length of the vehicle is small in comparison to the total length of the vehicle while 

at speeds greater than about 35 miles per hour. 
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Figure 2.10 Simplified Geometric Relationships for Steering 

2.4 CORNERING 

The center of gravity is used as a reference point in creating the two-wheel model. Vehicles will 

have centers of gravity in different locations, and this can affect how the car maneuvers. The 

placement of the center of gravity is especially important in a turn. Neutral steer, understeer, and 

oversteer are terms used to describe cars with centers of gravity in the middle, front, or back of the 

car. Note that the following sections will make simplifications that are not always applicable, 

especially when determining stability. The center of gravity is an important factor in determining 

stability of a vehicle, but it is not the primary factor. These models focus on the effect of slip angles 

and steering angles on the vehicle. Camber angles describe a tilting of the wheel face away from 

the car body, and are used in some racing vehicles. Camber angles will not be discussed, as slip 

angles are generally twenty times the magnitude of camber angles in common vehicle dynamics 

(Blundell and Harty, 2004). 
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2.4.1 Neutral Steer 

A neutrally-steered car is one that has a center of gravity in the middle of the vehicle (see Fig. 

2.11). For now, consider the cornering coefficients Cαf and Cαr of the front and rear tires to be the 

same. Assume that the lateral force on the tire is linearly related to the slip angle. The lateral force 

will be modeled as the slip angle times the cornering coefficient. To write the equations of motion 

for the vehicle, assume that the small angle assumption can be used. 

 

Figure 2.11 Neutral Steer Car 

This means that sufficiently small steering angles are applied to the vehicle and the slip angles are 

small. Normally, most drivers will experience slip angles of about three degrees or less, so the 

small angle assumption will work well in most situations (Dixon, 2009). It is also assumed that the 

car is in steady-state cornering, so that pitching or rolling is not considered. Figure 2.12 shows a 

neutrally-steered vehicle as it maneuvers a turn. The sum of the forces in the y-direction is shown 

in Eqn. 2.11 and the moment balance about the z-axis (pointing out of the paper) is shown in Eqn. 

2.12. 

 ∑𝐹𝑦 = 𝑚𝑎:  −𝐶𝛼𝑟𝛼𝑟−𝐶𝛼𝑓𝛼𝑓 = (𝑚)(𝑉
2/𝑅) (2.11) 
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∑𝑀𝑧−𝑎𝑥𝑖𝑠 = 0:    𝐶𝛼𝑓𝛼𝑓𝑎 = 𝐶𝛼𝑟𝛼𝑟𝑏 

(2.12) 

The sign of the lateral forces in Eqn. 2.11 may be confusing at first. Note that the sign of the slip 

angle is determined using the right-hand rule according to section 7.4.2 of SAE J670. This means 

that the slip angles will be negative as shown in Fig. 2.12. To have lateral forces that pull the 

vehicle into the center of the turn, there must be a negative sign multiplied to the cornering stiffness 

and slip angle. 

 

Figure 2.12 Neutral Steer Car Path Diagram 

The sum of the moments equation shows that the slip angles are equal because the cornering 

coefficients are equal and the distance from the back of the car to the center of gravity is equal to 
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the distance from the front of the car to the center of gravity. Also, note that the Ackermann 

steering angle is equal to the steering angle δ because the slip angles are equal in magnitude. From 

the sum of the forces in the y-direction, the slip angles are shown to increase as the lateral 

acceleration increases. 

 Although neutral steer cars are simple to look at and analyze, few cars on the market are 

perfectly neutral steer. Often, vehicles are slightly understeered or oversteered, depending on the 

cornering characteristics required. 

2.4.2 Understeer 

An understeer vehicle is one that has a center of gravity towards the front of the vehicle. As an 

example, consider a vehicle with a center of gravity located one-third of the total length of the car 

from the front (see Fig. 2.13). 

 

Figure 2.13 Understeer Car Model 

As with the previous section on neutrally-steered vehicles, assume that the cornering stiffness is 

equal in the front and rear tires of the car. The sum of the forces in the y-direction is shown by 

Eqn. 2.13 and the sum of the moments in the z-direction is shown in Eqn. 2.14. 



www.manaraa.com

 

16 

 

 
∑𝐹𝑦 = 𝑚𝑎𝑦:  𝑚𝑎𝑦 = 𝐹𝑓 + 𝐹𝑟 

(2.13) 

 ∑𝑀𝑧−𝑎𝑥𝑖𝑠 = 0:  𝐹𝑓 (
1

3
) 𝐿 = 𝐹𝑟 (

2

3
) 𝐿  (2.14) 

Equations 2.13 and 2.14 can be used to find relationships between the front and rear slip angles. 

Rearranging the equations and solving for the lateral forces gives Eqns. 2.15 and 2.16. 

 𝐹𝑓 = (
2

3
)𝑚𝑎𝑦 = −𝐶𝛼𝑓𝛼𝑓 (2.15) 

 𝐹𝑟 = (
1

3
)𝑚𝑎𝑦 =  −𝐶𝛼𝑟𝛼𝑟 (2.16) 

Equations 2.15 and 2.16 show that the magnitude of the front slip angle is two times the magnitude 

of the rear slip angle. To visualize the slip angles more clearly, see Fig. 2.14. The larger front slip 

angle means that the front tire takes on a larger lateral load than the rear. The slip angles are similar 

to the steering angle, because both direct the car in a particular direction. Since the slip angles are 

not equal in magnitude, the steering angle will have to change in order to keep the vehicle on its 

intended path. Refer to Fig. 2.10 for the background on the derivation of Eqn. 2.17. 

 𝛿 =  𝛿𝐴 +𝛼𝑟 − 𝛼𝑓  (2.17) 

After substituting the values of the front and rear slip angles, the steering angle of the understeered 

vehicle is given in Eqn. 2.18. 

 𝛿 = 𝛿𝐴 +𝛼𝑟 − 2𝛼𝑟 = 𝛿𝐴 − 𝛼𝑟 < 𝛿𝐴 (2.18) 

Equation 2.18 shows that the steering angle must be less than the Ackermann steering angle. In 

other words, the steering angle needed to keep an understeered car on a path of fixed radius is less 

than the steering angle needed to keep a neutrally-steered vehicle on a fixed path.  
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Figure 2.14 Understeer Car Path 

2.4.3 Oversteer 

An oversteer vehicle has a center of gravity in the rear of the car. For example, consider a vehicle 

with a center of gravity located two-thirds of the total body length from the front of the car (see 

Fig. 2.15). The sum of the forces in the y-direction and the sum of the moments about the z-axis 

is shown in Eqns. 2.19 and 2.20. 

 ∑𝐹𝑦 = 𝑚𝑎𝑦:  𝑚𝑎𝑦 = 𝐹𝑓 + 𝐹𝑟 (2.19) 
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 ∑𝑀𝑧−𝑎𝑥𝑖𝑠 = 0:  𝐹𝑓 (
2

3
) 𝐿 = 𝐹𝑟 (

1

3
) 𝐿  (2.20) 

 

Figure 2.15 Oversteer Car Model 

In this case, the rear wheel takes on a larger force than the front wheel, as seen by rearranging 

Eqns. 2.19 and 2.20 to get Eqns. 2.21 and 2.22. 

 𝐹𝑓 = (
1

3
)𝑚𝑎𝑦 = −𝐶𝛼𝑓𝛼𝑓 (2.21) 

 𝐹𝑟 = (
2

3
)𝑚𝑎𝑦 =  −𝐶𝛼𝑟𝛼𝑟 (2.22) 

The rear slip angle is two times the front slip angle. The steering angle will have to change to 

accommodate the difference in magnitude between the front and rear slip angles. The new steering 

angle is given by Eqn. 2.23. 

 𝛿 = 𝛿𝐴 +𝛼𝑟 − 
1

2
𝛼𝑟 = 𝛿𝐴 + 

1

2
𝛼𝑟 > 𝛿𝐴 (2.23) 

Figure 2.16 shows the oversteered car along a curved path, and the associated slip angles as well 

as the steering angle (Milliken, 1995). 
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Figure 2.16 Oversteer Car Path 

2.5 ACCELERATION PERFORMANCE  

The differences in location of the center of gravity affect the steering angle to keep a vehicle on a 

straight- line path. The placement of the center of gravity can also affect the acceleration 

performance of a vehicle.  

2.5.1 Oversteer Car Acceleration Performance 

Consider a vehicle as shown in Fig. 2.17 with a total longitudinal length of L which experiences 

an acceleration ax in the x-direction. Assume the center of gravity is one-twelfth of the length L. 
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Figure 2.17 Theoretical Oversteer Car 

The frictional force Fx acting on the tire in the x-direction are assumed to be equal to a coeffic ient 

of friction times the normal force on the tire. The effect of aerodynamic forces will be ignored. 

The equations for the sum of the forces in the z-direction, sum of the moments about the y-axis, 

and the sum of the forces in the x-direction are shown in Eqns. 2.24, 2.25, and 2.26. 

 ∑𝐹𝑧 = 𝑚𝑔 ∶    𝐹𝑓 + 𝐹𝑟 = 𝑚𝑔  (2.24) 

 ∑𝑀𝑦−𝑎𝑥𝑖𝑠 = 0:     −𝐹𝑓 (
5

12
𝐿) +  𝐹𝑟 (

𝐿

12
) − 𝐹𝑥 (

𝐿

12
) = 0 (2.25) 

 ∑𝐹𝑥 = 𝑚𝑎𝑥 :    𝐹𝑥 = 𝑚𝑎𝑥  (2.26) 

The equation for the force due to friction on the rear tire is modeled as shown in Eqn. 2.27. 

 𝐹𝑥 =  𝜇𝐹𝑟 (2.27) 

These equations can be rearranged to solve for the acceleration in the x-direction (see Eqn. 2.28). 

 𝑎𝑥 = 
30𝑔

6 − 𝜇
− 5𝑔  (2.28) 

This result will be compared with the acceleration of an understeered car in the next section. 

2.5.2 Understeer Car Acceleration Performance 

The model of the understeered car is shown in Fig. 2.18. 
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Figure 2.18 Theoretical Understeer Car 

The frictional force Fx acting on the tire in the x-direction are assumed to be equal to a coeffic ient 

of friction times the normal force on the tire. The effect of aerodynamic forces is ignored. The 

equations of motion for the sum of the forces in the z-direction, sum of the moments about the y-

axis, the sum of the forces in the x-direction, and the equation for the frictional force on the rear 

tire is shown in Eqns. 2.29, 2.30, 2.31, and 2.32. 

 ∑𝐹𝑧 = 𝑚𝑔 ∶    𝐹𝑓 + 𝐹𝑟 = 𝑚𝑔      (2.29) 

 ∑𝑀𝑦−𝑎𝑥𝑖𝑠 = 0:     −𝐹𝑓 (
1

12
𝐿) + 𝐹𝑟 (

5

12
𝐿) − 𝐹𝑥 (

𝐿

12
) = 0  (2.30) 

 ∑𝐹𝑥 = 𝑚𝑎𝑥 :    𝐹𝑥 = 𝑚𝑎𝑥  (2.31) 

 𝐹𝑥 =  𝜇𝐹𝑟 (2.32) 

This gives an acceleration in the x-direction as shown in Eqn. 2.33. 

 𝑎𝑥 = 
6𝑔

6 − 𝜇
−𝑔 (2.33) 

The acceleration for the understeered car is five times less than that of the oversteered vehicle. 

This helps explain why some sports cars, such as the test vehicle used in this thesis, are oversteered. 

It allows the vehicle to accelerate more quickly because the weight is closer to the torque-driven 
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tires. It may seem odd at first that the relationship between the two equations for acceleration is 

based on a factor of five. However, this is just due to the set-up of the problem. If the car had not 

been split so that the distance to the center of gravity from the front was five-twelfths, then the 

factor between the accelerations of the oversteer and understeer vehicles would have been 

different.  

2.6 FULL TWO-WHEEL MODEL 

These simple situations have been helpful for understanding the basics of vehicle motion. 

However, to understand the stability of a vehicle when going into a turn or during a lane change, 

equations of motion to describe the yaw rate and lateral velocity need to be derived. To do this, 

the velocities of the tires must be known in detail. See Fig. 2.19 for a complete diagram of the tire 

velocities. 

At the center of gravity of each tire, there is a velocity vector due to the forward motion of the car 

called V, the lateral motion called U, and the rotational effect of the yaw rate r. The equations for 

the lateral velocity vectors of the front and rear tire are given in Eqns. 2.34 and 2.35. 

 front lateral velocity = 𝑈 + 𝑎𝑟 (2.34) 

 rear lateral velocity = 𝑈− 𝑏𝑟 (2.35) 

Now the equations for the body slip angle and the tire slip angles can be determined. The body slip 

angle is defined by SAE J670 as shown in Eqn. 2.36. The small angle assumption is applied. 

 𝛽 = 𝑡𝑎𝑛−1
𝑈

𝑉
 ≈  

𝑈

𝑉
 (2.36) 

The slip angles for the front and rear tires are shown in Eqns. 2.37 and 2.38. They are derived 

using Fig. 2.19. 



www.manaraa.com

 

23 

 

 

Figure 2.19 Velocity Vector Diagram 

 𝛼𝑟 = 𝑡𝑎𝑛
−1
𝑈 − 𝑏𝑟

𝑉
 ≈  

𝑈 − 𝑏𝑟

𝑉
≈
𝑈

𝑉
−
𝑏𝑟

𝑉
 ≈  𝛽 −

𝑏𝑟

𝑉
 (2.37) 

 𝛼𝑓 = 𝑡𝑎𝑛
−1 (

𝑈 + 𝑎𝑟

𝑉
−  𝛿)  ≈  

𝑈 + 𝑎𝑟

𝑉
 −  𝛿 ≈  

𝑈

𝑉
+
𝑎𝑟

𝑉
 −  𝛿 ≈  𝛽 +

𝑎𝑟

𝑉
 −  𝛿 (2.38) 

The lateral acceleration of the vehicle is given by Eqn. 2.39. 

 𝑎𝑦 =  𝑈̇ + 𝑟×𝑉 (2.39) 

Equation 2.39 can be rewritten using the body slip angle, which is given by Eqn. 2.36, as 𝑈 ≈

 𝛽𝑉. The derivative of this equation is 𝑈̇  ≈  𝛽̇𝑉. The lateral acceleration with the body slip angle 

is given by Eqn. 2.40. 
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 𝑎𝑦 = 𝛽̇𝑉 + 𝑉𝑟 = 𝑉(𝑟 +  𝛽̇) (2.40) 

The equations of motion can be written by viewing Fig. 2.12, 2.14, or 2.16.  

 ∑𝐹𝑦 = 𝑚𝑎𝑦:  −𝐶𝛼𝑟𝛼𝑟 −𝐶𝛼𝑓𝛼𝑓 = 𝑚(𝑉(𝑟 +  𝛽̇)) (2.41) 

 ∑𝑀𝑧−𝑎𝑥𝑖𝑠 = 𝐼𝑧 𝑟̇:   −𝐶𝛼𝑓𝛼𝑓𝑎+ 𝐶𝛼𝑟𝛼𝑟𝑏 = 𝐼𝑧 𝑟̇ (2.42) 

The lateral forces in Eqns. 2.41 and 2.42 can be expanded by writing the slip angles in terms of 

vehicle velocities from Eqns. 2.37 and 2.38. The expanded versions of the lateral forces are shown 

in Eqns. 2.43 and 2.44. 

 𝐹𝑓 = −𝐶𝛼𝑓  𝛼𝑓 = −𝐶𝛼𝑓 (𝛽 +
𝑎𝑟

𝑉
−  𝛿) =  −𝐶𝛼𝑓𝛽 − 𝐶𝛼𝑓

𝑎𝑟

𝑉
+ 𝐶𝛼𝑓𝛿 (2.43) 

 𝐹𝑟 = −𝐶𝛼𝑟𝛼𝑟 = −𝐶𝛼𝑟 (𝛽 −
𝑏𝑟

𝑉
) = −𝐶𝛼𝑟𝛽 + 𝐶𝛼𝑟

𝑏𝑟

𝑉
 (2.44) 

The sum of Eqns. 2.43 and 2.44 is the total force in the y-direction. This is given in Eqn. 2.45. 

 𝐹 = 𝐹𝑟 +𝐹𝑓 =   𝛽(−𝐶𝛼𝑟  −𝐶𝛼𝑓)+ 
𝑟

𝑉
(−𝑎𝐶𝛼𝑓 +𝑏𝐶𝛼𝑟) + 𝐶𝛼𝑓𝛿 (2.45) 

The expanded versions of the lateral forces can be used to expand the sum of the moments about 

the z-axis (see Eqn. 2.46). 

 

𝑀 =  𝑀𝑓 + 𝑀𝑟 = 𝐹𝑓𝑎 − 𝐹𝑟𝑏

=   𝛽(𝑏𝐶𝛼𝑟 − 𝑎𝐶𝛼𝑓) + 
𝑟

𝑉
(−𝑎2𝐶𝛼𝑓 − 𝑏

2𝐶𝛼𝑟 )+ 𝑎𝐶𝛼𝑓𝛿 

(2.46) 

These equations can be thought of as a series of partial derivatives with respect to β, δ, and r. These 

derivatives can be individually labeled and re-named to make the equation of motion more 

compact. Also, they help users conceptualize the changing of a variable. According to Milliken, 

this idea of using partial derivatives is common in the aeronautical industry (1995). For Eqn. 2.45, 

partial derivatives of the lateral force components are written in Eqns. 2.47, 2.48, and 2.49. 
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 𝜕𝐹

𝜕𝛽
= 𝐹𝛽 = −(𝐶𝛼𝑟 + 𝐶𝛼𝑓) 

(2.47) 

 
𝜕𝐹

𝜕𝑟
= 𝐹𝑟 = 

−1

𝑉
(𝑎𝐶𝛼𝑓 − 𝑏𝐶𝛼𝑟) (2.48) 

 
𝜕𝐹

𝜕𝛿
= 𝐹𝛿 = 𝐶𝑓 (2.49) 

Using Eqns. 2.47, 2.48, and 2.49 in Eqn. 2.45 yields Eqn. 2.50. 

 𝐹 = 𝛽𝐹𝛽 +  𝑟𝐹𝑟 + 𝛿𝐹𝛿  (2.50) 

The partial derivatives can make the relationship between the lateral force and changes in the 

variables clear. The 𝐹𝛿  term can be thought of as the control term. The steering angle will have a 

larger effect on the lateral forces as the cornering stiffness increases. In other words, a stiffer spring 

will output a larger force for the same amount of deflection compared to a less stiff spring.  

The  𝐹𝛽  is the damping term because it reduces the body angle as cornering stiffness in 

either tire increases. The body angle is approximately the lateral velocity divided by the 

longitudinal velocity. As the lateral velocity increases, the  𝐹𝛽  term becomes more negative and 

reduces the lateral force. In other words, the damping term opposes an increase in lateral force per 

change in lateral velocity.  

The 𝐹𝑟 term is the forcing term. It is the rate of change between the lateral force and the 

yaw rate. As the difference between the moments caused by the lateral forces and the front and 

rear tires increases, so does the 𝐹𝑟 term and the yaw rate. This can be physically explained by 

imagining a car that has lost traction in the rear wheels. In this case, the difference between the 

moment caused by the front and rear tires will be large, the yaw rate will increase, and the car will 

spin. Note that this term decreases as velocity decreases. If the car had begun losing traction in the 

rear wheels, but it was only going ten miles per hour, it would spin less than a car going fifty miles 

per hour. 
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The partial derivatives of the moment equation are shown in Eqns. 2.51, 2.52, and 2.53. 

 
𝜕𝑀

𝜕𝛽
= 𝑀𝛽 =  (𝑏𝐶𝛼𝑟 − 𝑎𝐶𝛼𝑓) (2.51) 

 
𝜕𝑀

𝜕𝑟
= 𝑀𝑟 = 

1

𝑉
(−𝑎2𝐶𝛼𝑓 − 𝑏

2𝐶𝛼𝑟) (2.52) 

 
𝜕𝑀

𝜕𝛿
= 𝑀𝛿 =  𝑎𝐶𝛼𝑓  (2.53) 

Equation 2.46 can be rewritten in terms of the moment partial derivatives presented in Eqns. 2.51, 

2.52, and 2.53 (see Eqn. 2.54). 

 𝑀 = 𝛽𝑀𝛽 +  𝑟𝑀𝑟 + 𝛿𝑀𝛿  (2.54) 

Like the partial derivatives for the lateral forces, the partial derivatives of the moment equation 

have special meaning. The 𝑀𝛿  term is the control term because it can change the direction of the 

car from an input from the driver via the steering angle. Notice that 𝑀𝛿  is more sensitive to changes 

in the steering angle than 𝐹𝛿  by a factor of a, the length from the front of the car to the center of 

gravity. 

  𝑀𝛽  is the moment stability term. 𝑀𝛽 is the rate at which the moment balance changes with 

β. When the moment at the front tire is greater than the moment at the rear tire, the car is 

oversteered and the entire term is negative. For an oversteered car, to increase the magnitude of 

the 𝑀𝛽  term for tires of equal stiffness, the center of mass is shifted farther forward to increase the 

length a. This causes the slip angle β to decrease, and the longitudinal velocity vector will increase 

as the lateral velocity decreases. In the understeer case where b is greater than a,  𝑀𝛽 is positive. 

As the car becomes more understeered, a change in the moments will cause the lateral velocity to 

increase as β increases. 
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 𝑀𝑟 is the moment damping term. It increases in magnitude whenever the moment created 

by either the front or rear tire increases. The term is always negative, meaning that it opposes a 

change in the yaw rate for a given change in the moments. It decreases as the velocity decreases, 

and it increases as the length of the vehicle increases. The partial derivatives are used to rewrite 

Eqns. 2.41 and 2.42 (see Eqns. 2.55 and 2.56).      

 𝑚(𝑉(𝑟 +  𝛽̇)) =  𝛽𝐹𝛽 +  𝑟𝐹𝑟+ 𝛿𝐹𝛿  (2.55) 

 𝐼𝑧 𝑟̇ =  𝛽𝑀𝛽 +  𝑟𝑀𝑟 + 𝛿𝑀𝛿  (2.56) 

These equations will help determine the stability of the car, as seen in the next section. 

2.7 STABILITY OF A TWO-WHEEL MODEL IN A STEADY-STATE TURN     

Consider a vehicle that is traveling in a circular path. The rate of change of the angle of rotation 

will be considered constant in this model, since the car is assumed to be following a curve of 

constant radius. This gives the relationship shown in Eqn. 2.57. 

 𝑟 = 𝑉/𝑅 (2.57) 

This model assumes that the car will have a constant longitudinal speed. This means that the car 

will have a constant yaw rate, and that 𝑟̇ and 𝛽̇ will be zero. The model assumes the steering input 

is a constant value. Applying these assumptions to Eqns. 2.55 and 2.56 gives Eqns. 2.58 and 2.59. 

 𝑚𝑉 (
𝑉

𝑅
) = 𝛽𝐹𝛽 + (

𝑉

𝑅
)𝐹𝑟 + 𝛿𝐹𝛿  (2.58) 

 0 = 𝛽𝑀𝛽 + (
𝑉

𝑅
)𝑀𝑟 + 𝛿𝑀𝛿  (2.59) 

In a steady-state turn, it is interesting to see the relationship between the curvature of the path (1/R) 

and the steering angle. Rearranging Eqns. 2.58 and 2.59 yields the relationship (see Eqn. 2.60). 
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𝑀𝛿𝐹𝛽 − 𝐹𝛿𝑀𝛽

𝑉(−𝑚𝑉𝑀𝛽 −𝑀𝑟𝐹𝛽 + 𝑀𝛽𝐹𝑟)
=  
1
𝑅⁄

𝛿
 (2.60) 

This equation can be simplified by rearranging the partial derivatives (see Eqn. 2.61). 

 
1
𝑅⁄

𝛿
= 

1
𝐿⁄

1 + 𝐾𝑉2
 (2.61) 

The K value in Eqn. 2.61 is called the stability factor. The stability factor is defined by Eqn. 2.62 

(Milliken, 1995). 

 𝐾 = (
1

𝐿
)

−𝑚𝑀𝛽

𝑀𝛿𝐹𝛽 − 𝐹𝛿𝑀𝛽
 (2.62) 

By substituting in the values of the partial derivatives defined by Eqns. 2.47, 2.48, 2.49, 2.51, 2.52, 

and 2.53, the stability factor can be reduced into physical terms (see Eqn. 2.63). 

 𝐾 = (
1

𝐿
)
𝑚(𝑏𝐶𝛼𝑟 − 𝑎𝐶𝛼𝑓)

𝐿𝐶𝛼𝑓𝐶𝛼𝑟
 (2.63) 

Equation 2.61 can be rearranged to obtain a function for the steering angle δ (see Eqn. 2.64).  

 𝛿 = 
𝐿

𝑅
+ 
𝐿𝐾𝑉2

𝑅
 (2.64) 

Figure 2.20 shows a graph Eqn. 2.64. Recall from Eqn. 2.1 that the lateral acceleration of a vehicle 

in a constant turn is equal to the longitudinal speed squared divided by the radius of the turn. This 

means that Fig. 2.20 shows the change in lateral acceleration of the car with respect to the steering 

angle. This graph shows that an oversteered vehicle will have a lateral acceleration that changes 

sign as the steering angle increases. This effect is seen through counter-steering. In racing vehicles, 

sometimes drivers will reverse the direction of the steering wheel in order to go through a turn 

more quickly. This is not seen with understeered vehicles, which need increasing steering angles 

in order to achieve higher lateral accelerations. 
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Figure 2.20 Steering Angle versus Lateral Acceleration Response 

The point at which the steering angle of an oversteered vehicle changes from a positive value 

to a negative value is called the critical speed. The critical speed can be calculated using Eqn. 2.64 

by setting the steering angle equal to zero (see Eqn. 2.65).  

 𝑉𝑐𝑟𝑖𝑡 = √
−1

𝐾
 (2.65) 

Note that the critical velocity will not be an imaginary number, because the value of K is negative 

for oversteered vehicles. The stability factor provides the best method to determine the stability of 

a vehicle, because it can numerically quantify whether a vehicle is oversteered or understeered. 

This is important because an oversteered vehicle, past its critical velocity, is tending toward an 

unstable handling scenario. 

Notice that the graph of steering angle versus lateral acceleration response starts at a value 

equal to the length of the car divided by the radius of the turn. This is equal to the Ackermann 

steering angle defined by Eqn. 2.10. The car is constrained to the geometry of the turn, which 
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means that the lowest acceleration the vehicle can achieve is at low speed, which satisfies the 

Ackermann steering conditions. As the lateral acceleration increases, the steering angle must 

increase beyond the Ackermann steering angle. 

 Another informative gain function to analyze is the response of the yaw rate to changes in 

the steering angle. Recall from Eqn. 2.57 that the yaw rate is equal to the longitudinal velocity 

divided by the radius of the turn. This means that Eqn. 2.61 can be multiplied by the longitud ina l 

velocity of the vehicle to get a relationship between yaw rate and steering angle (see Eqn. 2.66). 

 
𝑉
𝑅⁄

𝛿
= 

𝑉
𝐿⁄

1 + 𝐾𝑉2
 (2.66) 

Equation 2.66 is graphed in Fig. 2.21. 

 

Figure 2.21 Yaw Rate versus Steering Angle Response 

There are several important features to Fig. 2.21. First, note that for a positive value of K, there is 

a maximum yaw rate gain that is achieved but not exceeded. This means that an understeered 

vehicle has a limit to how fast it can change its angle of rotation. This maximum value is called 

the characteristic speed of an understeered vehicle, and can be calculated by finding the derivative 
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of the yaw rate gain equation and setting it equal to zero. First, divide the top and bottom by V 

(see Eqn. 2.67). 

 

𝑉
𝑅⁄

𝛿
= 

1
𝐿⁄

1
𝑉 + 𝐾𝑉

 (2.67) 

Take the derivative and set it equal to zero (see Eqn. 2.68). 

 
𝑑

𝑑𝑉
(
𝑉
𝑅⁄

𝛿
) = 

−1

𝐿
[
1

𝑉
+ 𝐾𝑉]

−2

[
−1

𝑉2
+ 𝐾] = 

1
𝑉2
−𝐾

𝐿 [
1
𝑉2
+2𝐾 + 𝐾2𝑉2]

= 0 (2.68) 

This gives  
1

𝑉2
−𝐾 = 0, which can be re-arranged to solve for the characteristic velocity shown in 

Eqn. 2.69. 

 𝑉𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 = √
1

𝐾
 (2.69) 

Note that the characteristic velocity will not be an imaginary number because the stability factor 

for an understeered vehicle is positive. The value of the yaw rate gain at this characteristic velocity 

can be found by substituting the result into Eqn. 2.67 as shown in Eqn. 2.70. 

 

𝑉
𝑅⁄

𝛿
(𝑉𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐) =  

√1
𝐾 𝐿⁄

1 + 𝐾(√
1
𝐾)

2
= 

1

2𝐿√𝐾
 (2.70) 

Equations 2.69 and 2.70 show that at the characteristic speed, there is a maximum yaw rate gain 

that is a function of the length of the vehicle and the stability factor K. It is interesting to note that 

the yaw rate gain decreases as the length of the car decreases. This makes physical sense, because 

it is easier to picture a small sports car moving around a turn quickly rather than a long limo. 
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Granted this example involves two vehicles which have very different masses, but it gives a general 

sense of the relationship between rotation angle and car length.  

 The oversteered vehicle has a vertical asymptote equal to the critical velocity. This can be 

calculated by setting the denominator of the yaw rate gain equation equal to zero, which will give 

the same result as in Eqn. 2.65. The asymptote clearly shows that the vehicle will become unstable 

at the critical velocity, because it will begin to spin at continuously increasing rates. Physically, if 

an oversteered vehicle makes a turn too quickly and increases the yaw rate rapidly, it could 

approach this critical velocity and spin out. 

 One other gain equation that is useful in determining vehicle stability is the lateral 

acceleration versus steering angle. This gain equation can be found by multiplying the yaw rate 

gain equation by the longitudinal velocity of the vehicle (see Eqn. 2.71). 

 
𝑉2 𝑅⁄

𝛿
= 

𝑉2 𝐿⁄

1 + 𝐾𝑉2
 (2.71) 

The lateral acceleration gain equation will have an asymptote equal to the critical velocity. This 

can be found by setting the denominator of Eqn. 2.71 equal to zero. A graph of the lateral 

acceleration gain equation is shown in Fig. 2.22. 
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Figure 2.22 Lateral Acceleration versus Steering Angle Response 

The understeered vehicle will approach a horizontal asymptote. The horizontal asymptote can be 

found using the limit of the lateral acceleration gain equation after using L’Hospital’s Rule twice 

by taking the derivative with respect to V of the numerator and denominator (see Eqn. 2.72). 

 𝑙𝑖𝑚
𝑉→∞

𝑉2 𝐿⁄

1 + 𝐾𝑉2
= 𝑙𝑖𝑚

𝑉→∞

2𝑉 𝐿⁄

1 + 2𝐾𝑉
= 𝑙𝑖𝑚

𝑉→∞

2/𝐿

2𝐾
=  

1

𝐾𝐿
= (√

1

𝐾
)

2

1

𝐿
= 
𝑉2𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐

𝐿
 (2.72) 

This horizontal asymptote means that an understeered vehicle will not be able to laterally 

accelerate as quickly as an oversteered vehicle. This makes the vehicle more stable in a turn, but 

also limits the ability of an understeered vehicle to be a competitive car in racing. However, it is 

very suitable for passenger vehicles. Many passenger vehicles are understeered to increase the 

turning stability of the car (Karnopp and Margolis, 2008).  

2.8            CONSTANT STEERING AND CONSTANT SPEED INPUT SIMULATION       

The two-wheel model is fairly simple to simulate, but defining the simulation parameters can prove 

more difficult. As with any engineering parameter, it can be found experimentally or theoretica lly. 
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Both approaches will be taken to find the cornering stiffness of the front and rear tire of a neutrally-

steered vehicle. The results for each method are compared afterwards. 

2.8.1 Experimental Determination of Cornering Stiffness 

The first step in determining the cornering stiffness is to calibrate the vehicle and the 

accelerometer. The first input to calibrate is the steering angle. In most cars, the rotation of the 

steering wheel does not have a one-to-one ratio of output to the tires. In fact, the steering wheel 

can rotate more that ninety degrees, but tires will generally rotate a total of forty-five degrees or 

less.  

 Vehicle manufacturers will have much more exact methods for determining the ratio than 

the procedure described here, but it is appropriate for a rough estimate. First, the front wheels of 

the car are aligned so that the face of the tire is in line with the body of the car. Tape is placed on 

the ground to mark the straight condition of the tires. Next, the tires are rotated and the steering 

angle rotation is recorded. The actual angle of rotation of the tires is measured by placing a piece 

of tape on the ground along the edge of the rotated tire. A protractor is used to measure the angle 

between the two pieces of marking tape. The relationship between tire angle and steering wheel 

angle is measured twice and is shown in Table 2.2. 

Table 2.2 Tire to Steering Wheel Ratio 

 

Table 2.2 shows that the steering wheel will move 18.5 times that of the tire angle. This ratio will 

be used in determining the steering angle in further calculations. 

Steering Wheel Angle Tire Angle Ratio of Wheel/Tire Angle

323 14 23.1

392 28 14

18.5Average
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 The mass of the car can be determined by driving the vehicle onto a set of scales. It is 

important to determine the weight on the front tires and the rear tires, because this information is 

used to calculate where the center of gravity is located on the vehicle. To find the center of gravity, 

set up a free-body diagram as shown in Fig. 2.17. Solve for the location of the center of gravity 

(defined by the lengths a and b) using a sum of the moments and sum of the forces in the y-direction 

to get Eqns. 2.73 and 2.74. Note that the vehicle length can usually be found online at the vehicle 

manufacturer’s website or a rough estimate can be found using a tape measure. 

 𝑎 = 
𝐿𝐹𝑟𝑒𝑎𝑟
𝑚𝑔

 (2.73) 

 𝑏 =  
𝐿𝐹𝑓𝑟𝑜𝑛𝑡
𝑚𝑔

 (2.74) 

 Next, the output for the yaw rate, lateral acceleration, and longitudinal acceleration is 

calibrated. Measurements are taken when the car is stationary and used to determine factors to 

subtract from raw data. These factors are shown in Table 2.3. 

Table 2.3 Raw Data Calibration Factors 

 

 The cornering coefficient can be found using the calibrated output from an accelerometer 

and gyroscope. The car is taken out to a parking lot, and driven in circles at constant speed and 

constant steering angle. The steering angle and speed are varied as shown in Table 2.4. 

Yaw Rate 0.027

Lateral Acceleration -0.127

Longitudinal Acceleration 0.219

Calibration Factors 
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Table 2.4 Experiment Steering Angles and Speeds 

 

In reality, it is difficult to keep a vehicle in a circular path in a parking lot given the fire hydrants, 

bumps, and parking dividers that may get in the way. It is important to keep the car in a circular 

path as much as possible. After the data is collected, the lateral acceleration is numerica l ly 

integrated using the rectangular rule in a spreadsheet to calculate the lateral velocity from the 

lateral acceleration (Kreyszig, 2011).  

 The test vehicle in question was originally approximately neutrally-steered. Measurements 

were taken of the car to determine cornering stiffness before it was modified to make it oversteered. 

The beauty in using a neutrally-steered car to determine cornering stiffness is that the front and 

rear cornering stiffness can be assumed equal. This is due to the fact that the weight distributed to 

the front and rear of the vehicle is approximately the same. Using this assumption and the small 

angle assumption, substitute Eqns. 2.37 and 2.38 for the slip angles in Eqn. 2.41 to yield Eqn. 2.75. 

Steering Angle (degrees) Speed (mph)

5

10

5

10

15

20

25

5

10

15

20

5

10

15

5

10

15

5

10

15

5

10
30

3

5

10

15

20

25
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 𝐶 =  
−𝑚(

𝑉2

𝑅
+ 𝑈̇)

(
2𝑈 + 𝑟(𝑎 − 𝑏)

𝑉
−  𝛿)

 (2.75) 

Equation 2.75 can be used to calculate the cornering stiffness of the front and rear tires. Note that 

many test vehicles will likely not be neutrally steered. In these cases, Eqns. 2.37 and 2.38 are 

substituted into Eqns. 2.41 and 2.42 to give values for the front and rear cornering stiffness as 

shown in Eqns. 2.76 and 2.77. 

 𝐶𝛼𝑓 = 
−𝐼𝑧 𝑟̇ − 

𝑚𝑏𝑉2

𝑅 −𝑚𝑏𝑈̇

𝐿 (
𝑈 + 𝑎𝑟
𝑉

−  𝛿)
 (2.76) 

 𝐶𝛼𝑟 = 
−(𝑚

𝑉2

𝑅 + 𝑚𝑈̇ + 𝐶𝛼𝑓𝛼𝑓)

𝑈 − 𝑏𝑟
𝑉

 (2.77) 

Note that Eqns. 2.76 and 2.77 use the small angle approximation. This means that the data collected 

for constant steering angle and constant speed needs to satisfy the condition. It is important to filter 

out the data that does not meet this approximation before calculating the cornering coefficient. 

Once the data has been filtered, a box plot of the cornering stiffness values for the different trials 

is calculated (see Fig. 2.23). Appendix A shows additional plots of raw data. 
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Figure 2.23 Experimental Cornering Coefficients 

The average cornering coefficient is 65 kilo-Newtons per radian.  

2.8.2 Theoretical Cornering Stiffness 

There are many factors that affect the cornering stiffness of a tire. There is extensive research and 

material on modeling tires for vehicles. Even structures such as airplanes, which only use 

pneumatic wheels for short periods of time, have a wide range of information on their tire 

performance (Sleeper, 1980). Various factors affect how a tire will deform under load, includ ing: 

age, type of tire (radial versus bias-ply), size, inflation pressure, load, rim width, tread, road 

surface, and temperature (Dixon, 1996). Out of all these factors, however, the inflation pressure 

and the load are the most important in determining tire deflection (Gillespie, 1992). 

Besides having multiple factors that affect tire stiffness, there are also many models that 

describe the behavior of vehicle tires. The most widely known tire model is the Magic Formula 

tire model. There are also Dugoff’s tire model, the dynamic tire model, and other models that focus 
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on the longitudinal slip of the tire (Rajamani, 2006). However, considering a linear relationship 

between the lateral force on the tire and slip angle is the easiest method. This is the method that 

will be used here to determine a theoretical value for stiffness. This assumption of a linear 

relationship is applicable for small slip angles. As the lateral force increases, the relationship 

becomes non-linear and the assumption is no longer valid (Dixon, 1996). See Fig. 2.24 for an 

approximation of this relationship. 

 

Figure 2.24 Relationship between Slip Angle and Lateral Force 

For an approximately neutrally-steered car with a total mass of 1550 kilograms, a mass distribution 

in the front of 806 kilograms, a mass distribution in the rear of 744 kilograms, and a tire pressure 

of 36 pounds per square inch, using a graph of cornering coefficient versus inflation pressure, a 

theoretical estimate of cornering stiffness is 86 kilonewtons per radian in the front and 79 

kilonewtons per radian in the rear. Note that the cornering coefficient is the cornering stiffness 

divided by the applied load. It is not a purely non-dimensional value, but it is extremely helpful in 

estimating stiffness of tires with different applied loads. In this case, for a tire with pressure equal 
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to 36 pounds per square inch, the cornering coefficient is 0.19 with units of degrees inverse.  

Multiplying by the acceleration due to gravity, the weight on the tire, and converting degrees to 

radians gives the approximation for the cornering stiffness (Wong, 2008). For comparison, 

consider Gillespie’s work, which gives a graph of cornering stiffness versus inflatio n pressure. 

Using this graph, an estimate of the cornering stiffness would be 48 kilonewtons per radian after 

unit conversions (Gillespie, 1992). The method described by Wong’s text will be used as an 

estimate in the following simulations because it applies changes in tire pressure and in tire load in 

the same calculation, while Gillespie’s graphs do not.  

2.8.3 Comparing Theoretical versus Experimental Results 

The experimental result is on the same order of magnitude as the theoretical result for cornering 

stiffness, and is only about twenty percent less than the rear cornering stiffness. This indicates that 

there is agreement between the experimental results and the theoretical results. If the experiment 

is repeated in the future, measurements of the coefficient of friction between the road surface and 

the tire should be measured and factored into the result. The effect due to the coefficient of friction 

could be approximated by plotting data taken on a dry day and on a rainy day. Assuming that there 

is a linear relationship between cornering coefficient and the coefficient of friction, the coeffic ient 

of friction could be calculated by noting the relationship between the two test runs.  

Also, the location of the accelerometer and gyroscope should be measured and recorded. It 

is likely that the sensors were not at the center of gravity of the vehicle, thus distorting the 

measurements taken. The problem should be remedied as follows. Consider sensor placement as 

shown in Fig. 2.25. When the sensor is moved to a new position relative to the center of gravity, 

the rotation of the vehicle as it moves through a turn will affect how the sensor gathers information. 
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Instead of just measuring the lateral and longitudinal speeds of the vehicle, the measured values 

are as shown in Eqns. 2.78 and 2.79. 

 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑉 + 𝑟𝑦 (2.78) 

 𝑈𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑈 + 𝑟𝑥 (2.79) 

 

Figure 2.25 Accounting for Sensor Location 

The sensor would also feel acceleration effects as described by Eqns. 2.80 and 2.81.  

 𝑎𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 = 𝑉̇ − 𝑟𝑈 (2.80) 

 𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =  𝑈̇ + 𝑟𝑉 (2.81) 

Equations 2.80 and 2.81 are derived using a more general acceleration equation used to find the 

acceleration as shown in Eqn. 2.82 (Karnopp and Margolis, 2008). 

 
𝑑𝑉⃑⃑

𝑑𝑡
=  (

𝜕𝑉⃑⃑

𝜕𝑡
)
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒

+  𝜔 ×𝑉⃑⃑ (2.82) 

Note that there is no term due to the change in yaw rate because in constant cornering the yaw rate 

is fixed by the radius of the turn and the longitudinal speed of the vehicle (see Eqn. 2.57).  
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 Note that even if the acceleration effects and the coefficient of friction were accounted for, 

the cornering stiffness may still be far from theoretical results. Various tire manufacturers and 

vehicle designers have testing equipment devoted to tires in order to properly characterize road-

tire friction, contact area, angle of the tire, and other configurations that cannot be easily described 

by the rough methods described in this section (Sakai, 1981).  

2.8.4 Simulation Vehicles 

The previous sections have shown that the experimental results for the cornering stiffness are 

questionable, so the method described by Wong will be used to find the stiffness values for the test 

vehicles. Three test vehicles will be simulated. One vehicle will have parameters based on the car 

described in Section 2.8.1. However, instead of being neutrally-steered, the vehicle will have 

increased weight in the rear. This is to simulate the effect of modifying a stock vehicle. A 

hypothetical neutrally-steered car and an understeered vehicle based on a Porsche 928 will also be 

simulated. 

2.8.4.1 Oversteered Vehicle Parameters 

The oversteered vehicle (called test vehicle one) has a mass of 1724 kilograms, total length of 2.77 

meters, and width of 1.92 meters. The mass distributed towards the front of the car is equal to 784 

kilograms and 940 kilograms to the rear. The length a of 1.51 meters and length b of 1.26 meters 

are calculated using Eqns. 2.73 and 2.74. The cornering stiffness of the front and rear tires are 

calculated in Eqns. 2.83 and 2.84. 

 𝐶𝛼𝑟 = (0.19
1

deg
) ∗ (

940𝑘𝑔

2
) ∗ (9.81

𝑚

𝑠2
) ∗ (

180 𝑑𝑒𝑔

𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠
) = 100 𝑘𝑁/𝑟𝑎𝑑 (2.83) 

 𝐶𝛼𝑓 = (0.19
1

𝑑𝑒𝑔
) ∗ (

784𝑘𝑔

2
)∗ (9.81

𝑚

𝑠2
) ∗ (

180 𝑑𝑒𝑔

𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠
) = 84 𝑘𝑁/𝑟𝑎𝑑 (2.84) 
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The moment of inertia about the z-axis of the vehicle is calculated using the moment of inertia of 

a rectangle about its center and a factor to account for the rear-ward placement of center of gravity 

as shown in Eqn. 2.85 (Hibbeler, 2013). 

 
𝐼𝑧 =  

1

12
(𝑚𝑎𝑠𝑠) ∗ ((𝑙𝑒𝑛𝑔𝑡ℎ)2 + (𝑤𝑖𝑑𝑡ℎ)2) +𝑚𝑎𝑠𝑠 ∗ (𝑎 − 𝑏)2

= 1.74 ∗ 103 𝑘𝑔 ∗ 𝑚2  

(2.85) 

The stability factor of the vehicle is found using Eqn. 2.63 to be -2.2*10-5 kilograms per meter. 

Note that stability factors are often small. Jazar gives an example in his text where the stability 

factor of an oversteered vehicle which is on the order of 10-4 (Jazar, 2008).  

2.8.4.2 Neutral Steer Vehicle 

In reality, no car is perfectly neutral steer. There is no agreed upon range that a vehicle must fall 

between in order to be considered neutrally-steered. In fact, a neutral steer car is a case that is best 

used to analyze the theoretical motion of a vehicle.  

 For the neutral steer test vehicle two, data based on a Porsche 928 will be modified to give 

a neutral steer car. Consider a car with mass equal to 1450 kilograms, a length of 2.5 meters, and 

a track width of 1.6 meters. Since the vehicle is neutral steer, a and b are equal to 1.25 meters. The 

cornering stiffness of the front and rear tires will be the same, and are calculated using the same 

procedure in the last section. The stiffness is 39 kilo-Newtons per radian. The moment of inertia 

is 1.06*103 kilograms times meters squared. The stability factor is zero, because of the set-up of 

the example (Campbell, 1981). 

2.8.4.3 Understeered Vehicle 

Vehicle three is more closely based on a Porsche 928. It has the same mass of vehicle two of 1450 

kilograms and the same width of 1.6 meters and length of 2.5 meters. Although a real Porsche 928 
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has a forward-wheel drive configuration with the engine in the front of the vehicle, the car is 

oversteered. In this example, the weight ratio of an actual Porsche 49-to-51 will be reversed to 51-

to-49 give an understeered vehicle. This gives a length a of 1.23 meters and a length b of 1.28 

meters. The cornering stiffness of the front tire is 39 kilo-Newtons per radian and 38 kilo-Newtons 

per radian in the rear. The moment of inertia is 1.07*103 kilograms times meters squared and the 

stability factor is 1.35*10-4 kilograms per meter (Campbell, 1981). 

2.8.5 Simulation Results 

Equations 2.41 and 2.42 can be rewritten in terms of the yaw rate r and the lateral velocity U using 

Eqns. 2.57 and 2.36 and put into a matrix form that is easier for coding shown in Eqn. 2.86. 

 [
𝑟̇
𝑈̇
] =  

[
 
 
 
−𝐶𝛼𝑟𝑏

2

𝐼𝑉
−
𝐶𝛼𝑓𝑎

2

𝐼𝑉

−𝐶𝛼𝑓𝑎

𝐼𝑉
+
𝑏𝐶𝛼𝑟
𝐼𝑉

𝐶𝛼𝑟𝑏

𝑚𝑉
−
𝐶𝛼𝑓𝑎

𝑚𝑉
− 𝑉

−𝐶𝛼𝑟
𝑚𝑉

−
𝐶𝛼𝑓
𝑚𝑉 ]

 
 
 

 [
𝑟
𝑈
]  + [

𝐶𝛼𝑓𝑎

𝐼
𝐶𝛼𝑓
𝑚

]𝛿 (2.86) 

Holding the steering angle at five degrees, keeping the longitudinal velocity constant at 35 miles 

per hour, and using zero initial conditions gives the output shown in Figs. 2.26, 2.27, and 2.28 for 

the three vehicles. The constants shown for the three vehicles are shown in Table 2.5. 

Table 2.5 Two-Wheel Simulation Constants 

 

 

Constants Oversteer Neutral Steer Understeer

mass (kg) 1724 1450 1450

length (m) 2.77 2.5 2.5

a (m) 1.51 1.25 1.23

b (m) 1.26 1.25 1.28

width (m) 1.92 1.6 1.6

Cr (kN/rad) 100 39 38

Cf (kN/rad) 84 39 39

Iz (kg*m
2
) 1.74*10

3
1.06*10

3
1.07*10

3
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Figure 2.26 Oversteer Vehicle One Response to Constant Steering Angle and Longitudinal 

Velocity 

 

Figure 2.27 Neutral Steer Vehicle Two Response to Constant Steering Angle and 

Longitudinal Velocity 
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Figure 2.28 Understeer Vehicle Three Response to Constant Steering Angle and Longitudinal 

Velocity 

It is interesting to note that the oversteered vehicle three travels in a wider circle than the 

understeered vehicle. This can be explained by looking at Eqns. 2.18 and 2.23. For a given steering 

angle, the understeered vehicle will have a steering angle and effect due to slip angles that gives it 

a larger overall Ackermann steering angle. The opposite is true for the oversteered vehicle, which 

will have a smaller Ackermann steering angle once slip angles are involved at greater speeds. 

According to Eqn. 2.10, the Ackermann steering angle is inversely proportional to the radius of 

the turn. Since the oversteered vehicle has a lower overall steering angle, it will move in a larger 

circular path than the understeered vehicle.  

 The yaw rate of the vehicles is important to analyze as well, because it gives insight to 

passenger comfort and stability of the car. If the yaw rate is too large, the car is likely to spin out 

of a turn. Also, the spinning sensation will be uncomfortable. Figures 2.29, 2.30, and 2.31 show 

the yaw rates of vehicle one, two, and three. 
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Figure 2.29 Vehicle One Yaw Rate 

 

Figure 2.30 Vehicle Two Yaw Rate 
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Figure 2.31 Vehicle Three Yaw Rate 

The yaw rate stays constant, even after a few seconds due to the steady turning behavior of the 

vehicles. Note that the oversteer vehicle has a lower yaw rate than the other two vehicles. Equations 

2.5, 2.18, 2.23, and 2.57 show that an understeered car with a larger Ackermann steering angle 

will have a smaller turn radius and thus a larger yaw rate. An oversteered vehicle will have a 

smaller Ackermann steering angle, larger turn radius, and smaller yaw rate. See Appendix B for 

additional simulations and Appendix D for a two-wheel model code. 

Chapter 3. FOUR-WHEEL MODEL 

The two-wheel model described in the last chapter is helpful for determining a rough estimate of 

the behavior of a vehicle. However, to develop a more accurate display of a car’s path, a four-

wheel model must be used. All of the parameters from the two-wheel model are valid, except there 

are added symbols for the slip angles at each tire. This model will also cover longitudinal dynamics 

from wind resistance and from climbing a hill. The added parameters are shown in Table 3.1. 
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Table 3.1 Additional Symbols 

 

This chapter will also discuss modeling the car without assuming a constant applied speed. Instead, 

models will use torque inputs to drive the rear wheels of the vehicle. 

3.1 VEHICLE AERODYNAMICS 

Vehicle aerodynamics are important to include in a complete model. The effect of air resistance 

on a vehicle is proportional to the area of the vehicle that pushes through the air, the density of the 

air, a drag coefficient, and the velocity squared of the vehicle (see Eqn. 3.1). 

 𝐹𝑑𝑟𝑎𝑔 = 
1

2
𝜌𝐴𝐶𝐷𝑉

2 (3.1) 

Term Symbol

Front left slip angle

Front right slip angle

Rear left slip angle 

Rear right slip angle

Torque applied to left rear wheel

Torque applied to right rear wheel

Longitudinal coefficient of friciton

Front Area

Drag Coefficient

Air Density

 11

 12

 22

 21

 21

 22

𝜇

𝜌

𝐶𝑑

𝐴



www.manaraa.com

 

50 

 

There are different values for the drag coefficient and area of a vehicle depending on the shape 

and size of the car. For a medium to large vehicle, typical values for the drag coefficient range 

from 0.30 to 0.42 and area that ranges from 1.90 to 2.16 square meters. Here, a median value of 

0.36 will be used for the drag coefficient and 2.03 square meters will be used for the area. The 

density of air will vary depending on the elevation, humidity, and temperature. Here a value of 

1.225 kilograms per meter cubed will be used. This corresponds to a temperature of fifteen degrees 

Celsius and a pressure of 101.32 kilo-Pascals. 

 Note that vehicle manufacturers will find more specialized values for the drag coeffic ient 

through testing. One test that is more feasible is the coast-down test. The test involves bringing the 

vehicle up to a known speed, and then letting it decelerate. As it decelerates, the speed of the 

vehicle is recorded and later used to determine the drag on the vehicle (Wong, 2008). 

3.2 LONGITUDINAL DYNAMICS 

Longitudinal dynamics, or travelling up a hill, affect the forces on the tires of a vehicle. See Fig. 

3.1 for a diagram of a vehicle moving up an inclined surface. The forces on the front and rear 

wheels can be found by taking the sum of the forces in the z-direction and the sum of the moments 

in the y-direction (see Eqns. 3.2 and 3.3). The friction forces on the front and rear tires are 

approximated by the normal force on the tires times a coefficient of friction.  
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Figure 3.1 Vehicle Moving Up Inclined Surface 

 ∑𝐹𝑧 = 0:      𝐹𝑓 + 𝐹𝑟 − 𝑚𝑔𝑐𝑜𝑠(𝜎) = 0 (3.2) 

 ∑𝑀𝑦−𝑎𝑥𝑖𝑠 = 0:       𝐹𝑓𝜇𝐻+ 𝐹𝑟𝜇𝐻 + 𝐹𝑟𝑏 − 𝐹𝑓𝑎 = 0 (3.3) 

Solving Eqns. 3.2 and 3.3 gives equations for the front and rear forces as shown in Eqns. 3.4 and 

3.5 (Dixon, 1996). 

 𝐹𝑟 = 
𝑎𝑚𝑔𝑐𝑜𝑠(𝜎) − 𝜇𝐻𝑚𝑔𝑐𝑜𝑠(𝜎)

𝐿
 (3.4) 

 𝐹𝑓 = 
𝜇𝐻𝑚𝑔𝑐𝑜𝑠(𝜎) + 𝑏𝑚𝑔𝑐𝑜𝑠(𝜎)

𝐿
 (3.5) 

Values of coefficients of friction will vary depending on road conditions, but as a conservative 

estimate of rubber to concrete interaction, a value of 0.8 will be used (Serway and Jewett, 2010).  

 Note that the height of the center of gravity from the ground must be accounted for. This 

can be determined experimentally by using a car trailer to provide an inclined surface. Scales can 

be placed on the trailer, and the car placed on the scales. This will shift the weight on the front and 

rear tires. Equations 3.2 and 3.3 can then be used to determine the height of the center of gravity. 

Note that the vehicle will have to be constrained physically so that is does not roll off of the trailer. 
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This means that the friction forces are no longer keeping the vehicle in place, and they will be 

ignored when doing calculations (Milliken, 1995). 

3.3 FOUR-WHEEL MODEL DESCRIPTION 

The four-wheel model is more complex than the two-wheel model because it involves slip angles 

and forces on each of the four tires. See Fig. 3.2 for a diagram of the model.  

 

Figure 3.2 Four-Wheel Vehicle Diagram 

Note that both front wheels have an applied steering angle δ. The width of the car is designated by 

t. As before, a and b are the lengths from the front and rear to the center of gravity. The forces on 

the tires that propel the vehicle forward are modeled as perpendicular to the tire length and width 

as shown in Fig. 3.3. The forces shown in Fig. 3.3 can be resolved into vectors pointing in the x- 

and y-directions as shown in Fig. 3.4. Figure 3.4 can be used to write the equations of motion.  
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Figure 3.3 Four-Wheel Force Diagram 

 

Figure 3.4 Four-Wheel Force Resolution Diagram 
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The sum of the moments, sum of the lateral forces, and sum of the longitudinal forces are shown 

in Eqns. 3.6, 3.7, and 3.8. 

 

∑𝑀𝑧: 𝐼𝑟̇ = (𝐹𝑥12 𝑐𝑜𝑠 𝛿)
𝑡

2
− (𝐹𝑦12 𝑠𝑖𝑛 𝛿)

𝑡

2
+ (𝐹𝑥12 𝑠𝑖𝑛 𝛿)𝑎 + (𝐹𝑦12 𝑐𝑜𝑠 𝛿)𝑎

+ (𝐹𝑦11 𝑐𝑜𝑠 𝛿)𝑎 + (𝐹𝑥11 𝑠𝑖𝑛 𝛿)𝑎 − (𝐹𝑥11 𝑐𝑜𝑠 𝛿)
𝑡

2

+ (𝐹𝑦11 𝑠𝑖𝑛 𝛿)
𝑡

2
−  𝐹𝑥21

𝑡

2
−  𝐹𝑦21𝑏 −  𝐹𝑦22𝑏 + 𝐹𝑥22

𝑡

2
 

(3.6) 

 

∑𝐹𝑦:  (𝐹𝑦21 +𝐹𝑦22) + 𝑐𝑜𝑠 𝛿 (𝐹𝑦11 + 𝐹𝑦12) + 𝑠𝑖𝑛 𝛿 (𝐹𝑥11 + 𝐹𝑥12)

= 𝑚(𝑈̇ + 𝑉𝑟) 

(87) 

 
∑𝐹𝑥 :  𝐹𝑥21 + 𝐹𝑥22 + 𝑐𝑜𝑠 𝛿 (𝐹𝑥11 + 𝐹𝑥12) − 𝑠𝑖𝑛 𝛿 (𝐹𝑦11 + 𝐹𝑦12)−  

1

2
𝜌𝐶𝑑𝐴𝑉

2

= 𝑚(𝑉̇ −𝑈𝑟) 

(88) 

The tire forces in Eqns. 3.6, 3.7, and 3.8 can be written in terms of the tire slip angles. A diagram 

of the tire slip angles is shown in Fig. 3.5 and a diagram showing the velocity vector resolution at 

each tire is shown in Fig. 3.6. The velocity vector resolution shown in Fig. 3.6 is used to write the 

slip angles as shown in Eqns. 3.9, 3.10, 3.11, and 3.12. 

 𝑡𝑎𝑛(𝛿 + 𝛼11) =  
𝑈 + 𝑟𝑎

𝑉 − 𝑟(
𝑡
2)

 (3.9) 

 
𝑡𝑎𝑛(𝛿 + 𝛼12) =  

𝑈 + 𝑟𝑎

𝑉 + 𝑟(
𝑡
2)

 
(3.10) 

 𝑡𝑎𝑛(𝛼21) =  
𝑈 − 𝑟𝑏

𝑉 − 𝑟(
𝑡
2)

 (3.11) 

 𝑡𝑎𝑛(𝛼22) =  
𝑈 − 𝑟𝑏

𝑉 + 𝑟(
𝑡
2)

 (3.12) 
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Figure 3.5 Slip Angle Diagram 

  

Figure 3.6 Four-Wheel Velocity Vector Diagram 
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Equations 3.6 through 3.12 can be linearized assuming small angles. Linearized equations for the 

sum of the moments in the z-direction, sum of the forces in the y-direction, and sum of the forces 

in the x-direction are shown in Eqns. 3.13, 3.14, and 3.15. 

 

∑𝑀𝑧: 𝐼𝑟̇ = (𝐹𝑥12)
𝑡

2
− (𝛿𝐹𝑦12)

𝑡

2
+ (𝛿𝐹𝑥12)𝑎 + (𝐹𝑦12)𝑎 + (𝐹𝑦11 )𝑎 + (𝛿𝐹𝑥11)𝑎

− (𝐹𝑥11)
𝑡

2
+ (𝛿𝐹𝑦11)

𝑡

2
− 𝐹𝑥21

𝑡

2
−  𝐹𝑦21𝑏 − 𝐹𝑦22𝑏 + 𝐹𝑥22

𝑡

2
 

(3.13) 

 ∑𝐹𝑦:  (𝐹𝑦21 + 𝐹𝑦22) + (𝐹𝑦11 +𝐹𝑦12) +  𝛿(𝐹𝑥11 + 𝐹𝑥12 ) = 𝑚(𝑈̇ + 𝑉𝑟) (3.14) 

 ∑𝐹𝑥 :  𝐹𝑥21 + 𝐹𝑥22 + 𝐹𝑥11 +𝐹𝑥12 − 𝛿(𝐹𝑦11 +𝐹𝑦12) −  
1

2
𝜌𝐶𝑑𝐴𝑉

2 = 𝑚(𝑉̇ − 𝑈𝑟) (3.15) 

Each rear tire will be driven by applying a torque to the wheels. This is modeled using Eqns. 3.16 

and 3.17. 

 𝐼𝑤 𝜔̇21 =  21 −𝑅𝐹𝑥21  (3.16) 

 𝐼𝑤 𝜔̇22 =  22 −𝑅𝐹𝑥22  (3.17) 

Assuming that the moment of inertia of the tires is small, the rear tire force created by a torque 

input can be simplified as shown in Eqns. 3.18 and 3.19. 

 𝐹𝑥21 = 
 21
𝑅

 (3.18) 

 𝐹𝑥22 = 
 22
𝑅

 (3.19) 

The slip angles of the tires can be linearized as shown in Eqns. 3.20 through 3.23. 

 𝛼11 = 
𝑈 + 𝑟𝑎

𝑉 − 𝑟(
𝑡
2)
−  𝛿 (3.20) 

 𝛼12 = 
𝑈 + 𝑟𝑎

𝑉 + 𝑟(
𝑡
2)
−  𝛿 (3.21) 
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 𝛼21 =  
𝑈 − 𝑏𝑟

𝑉 − 𝑟(
𝑡
2)

 (3.22) 

 𝛼22 =  
𝑈 − 𝑏𝑟

𝑉 + 𝑟(
𝑡
2)

 (3.23) 

The normal forces on both of the front and rear tires is shown in Eqns. 3.4 and 3.5. The friction 

force on each individual tire will oppose motion and will be proportional to the coefficient of 

friction times the normal force on the vehicle. The sign of the friction force can be calculated by 

dividing the longitudinal speed of the vehicle by the magnitude of the longitudinal speed and 

multiplying by a negative sign. See Eqns. 3.24 through 3.27 for the individual forces on each tire 

due to friction. 

 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥11 = −𝜇
𝑉

|𝑉|
(
𝜇𝐻𝑚𝑔𝑐𝑜𝑠(𝜎) + 𝑏𝑚𝑔𝑐𝑜𝑠(𝜎)

2𝐿
) (3.24) 

 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥12 = −𝜇
𝑉

|𝑉|
(
𝜇𝐻𝑚𝑔𝑐𝑜𝑠(𝜎) + 𝑏𝑚𝑔𝑐𝑜𝑠(𝜎)

2𝐿
) (3.25) 

 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥21 = −𝜇
𝑉

|𝑉|
(
𝑎𝑚𝑔𝑐𝑜𝑠(𝜎) − 𝜇𝐻𝑚𝑔𝑐𝑜𝑠(𝜎)

2𝐿
) (3.26) 

 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥22 = −𝜇
𝑉

|𝑉|
(
𝑎𝑚𝑔𝑐𝑜𝑠(𝜎) − 𝜇𝐻𝑚𝑔𝑐𝑜𝑠(𝜎)

2𝐿
) (3.27) 

The friction forces and the slip angles are substituted into the equations of motion as shown in 

Eqns. 3.28, 3.29, and 3.30. 
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∑𝑀𝑧: 𝐼𝑟̇ = (𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥12)
𝑡

2
− 𝛿(𝐶𝛼𝑓𝛼12)

𝑡

2
+ 𝛿(𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥12)𝑎 + (𝐶𝛼𝑓𝛼12)𝑎

+ (𝐶𝛼𝑓𝛼11)𝑎 + 𝛿(𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥11)𝑎 − (𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥11)
𝑡

2
+ 𝛿(𝐶𝛼𝑓𝛼11)

𝑡

2

−  (𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥21 + 
 21
𝑅
)
𝑡

2
−  𝐶𝛼𝑟𝛼21𝑏 −  𝐶𝛼𝑟𝛼22𝑏 + (𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥22

+ 
 22
𝑅
)
𝑡

2
 

(3.28) 

 

∑𝐹𝑦:  (𝐶𝛼𝑟𝛼21 + 𝐶𝛼𝑟𝛼22) + (𝐶𝛼𝑓𝛼11 +𝐶𝛼𝑓𝛼12)

+  𝛿(𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥11 + 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥12) = 𝑚(𝑈̇ + 𝑉𝑟) 

(3.29) 

 

∑𝐹𝑥 :  𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥21 +
 21
𝑅
+ 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥22 +

 22
𝑅
+ 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥11 +𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑥12

− 𝛿𝐶𝛼𝑓(𝛼11 +𝛼12) −  
1

2
𝜌𝐶𝑑𝐴𝑉

2 = 𝑚(𝑉̇ −𝑈𝑟) 

(3.30) 

The equations of motion are used to find the response of the vehicle to constant torque input in the 

next section (Martino, 2005).  

3.4 FOUR-WHEEL SIMULATION RESULTS: EQUAL TORQUE TO REAR WHEELS 

Simulation vehicle one (oversteered) will be used as a test case. Assume that the center of gravity 

is located at a height of 0.6 meters above the road surface. Note that the center of gravity for most 

passenger cars will be between 0.45 meters to 0.6 meters (Gillespie, 1992). A larger value for the 

center of gravity is used as a worst-case scenario for roll, which will be discussed later on in 

Chapter 4. Using the four-wheel equations of motion, the distance traveled by the vehicle is plotted 

while giving each rear wheel an equal torque of 1000 Newton-meters (approximately 733 pound-

feet). To put this value into perspective, this would be the limit of a high-end sports car. Many 

cars, such as the Dodge Challenger SRT Hellcat, Tesla Model S, Chevrolet Corvette, Dodge Viper, 
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or Lamborghini Aventador, would not be able to output enough torque to meet 1000 Newton-

meters (Hunting, 2015). This shows that the simulation is meant to describe the response of a 

powerful vehicle suited for racing, and not that of a commuter vehicle. The simulation output in 

Figs. 3.7 through 3.10 are for zero grade and 0.1 radians (5.7 degree) steering angle. 

 

Figure 3.7 X-Y Plot for Constant Torque Output, Zero Grade 

 

Figure 3.8 Yaw Rate for Constant Torque Output, Zero Grade 
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Figure 3.9 Angles for Constant Torque Output, Zero Grade 

 

Figure 3.10 State Variables for Constant Torque Output, Zero Grade 
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Note that the vehicle will have slip angles develop as the speed of the vehicle increases. This occurs 

very rapidly, as seen in Fig. 3.9, which causes the slip angles to increase in magnitude very quickly. 

Once the slip angles become large, the small angle assumption is no longer valid. The small angle 

does not need to be employed, however, and the code used to generate the plots shown in Figs. 3.7 

through 3.10 uses trigonometric functions instead of approximations. Although it is more accurate 

to use trigonometric functions, for longer running codes or real-time algorithms used to control 

vehicle speed, using trigonometric functions could make the code run longer than desired.  

3.5 FOUR-WHEEL SIMULATION: DIFFERENT TORQUE TO REAR WHEELS 

This simulation will use the same vehicle parameters as for Section 3.4. However, the right rear 

wheel will have 500 Newton-meters of torque applied and the left rear wheel will have 1000 

Newton-meters of torque. There will be a 0.1 radian (5.7 degree) steering angle applied on the 

vehicle. The results are shown in Figs. 3.11 to 3.14. 

 

Figure 3.11 X-Y Plot for Differing Torque, Zero Grade 
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Figure 3.12 Yaw Rate Plot for Differing Torque, Zero Grade 

 

Figure 3.13 Angles Plot for Differing Torque, Zero Grade 
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Figure 3.14 State Variables for Differing Torque, Zero Grade 

The car has a very similar response as in the previous section. The slip angles are very similar to 

the values for equal torque to both rear wheels, as is the yaw rate graph. However, the trajectory 

shown in Fig. 3.11 is not as large as the trajectory shown in Fig. 3.7. This makes physical sense, 

because the tires are supplied with less torque which reduces the force of the tires on the pavement 

and slows down the vehicle.  

3.6 FOUR-WHEEL MODEL SIMULATION: EQUAL TORQUE AND GRADE 

Consider the oversteered vehicle one as it enters a mountain road. As the vehicle moves up the 

spiraling road to the top of the mountain, more torque will need to be supplied or the vehicle will 

slow down and move less than it did on flat pavement. This simulation will use a 0.1 radian steering 

angle, 500 Newton-meter torque to the rear wheels, and a grade of 0.2 radians (about 11 degrees). 

The results are shown in Figs. 3.15 to 3.18. 
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Figure 3.15 X-Y Plot for Equal Torque, Grade 

 

Figure 3.16 Yaw Rate Plot for Equal Torque, Grade 
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Figure 3.17 Angles Plot for Equal Torque, Grade 

 

Figure 3.18 State Variables Plot for Equal Torque, Grade 
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The vehicle will move less longitudinally than the other simulated vehicles as it maneuvers up the 

grade because it is moving vertically as well. Note, however, that a 0.2 radian grade still allows 

the car to move up the hill quickly because a large 500 Newton-meter torque is applied to each of 

the rear wheels. It is also interesting to observe that the yaw rate is larger in this simulation than 

for other simulated scenarios. Recall that the yaw rate for an oversteered vehicle can increase to 

unstable quantities, but not in the case of an oversteered vehicle. An oversteered vehicle has greater 

loading on the rear tires than in the front tires. Maneuvering up an incline could exacerbate the 

oversteered characteristics of the vehicle by putting more weight on the rear tires and increasing 

the yaw rate. This simulation shows that if a control logic is implemented to reduce the yaw rate 

of a vehicle, care should be taken to include the effect of moving up an incline. For reference, 

additional four-wheel model simulations are given in Appendix C and code in Appendix E. 

3.7 FOUR-WHEEL MODEL: LANE CHANGE  

This simulation looks at the response of a vehicle moving into another lane of traffic. The goal is 

to keep the vehicle moving at 60 miles per hour (about 26 meters per second). Proportional controls 

are used to keep the difference between the actual longitudinal speed and the desired longitud ina l 

speed close to one another (see Eqn. 3.31). The steering angle is also changed using proportional 

controls (see Eqn. 3.32). The value K (not to be confused with the stability factor) changes 

depending on the time of the simulation. At first, K is equal to one indicating that the vehicle 

should move over into another lane by one meter. Afterwards, the vehicle is moved back into the 

original lane by changing K to negative one to indicate that the car should move one meter laterally 

in the negative direction. The last step in the simulation for changing the steering angle sets K 

equal to zero to keep the car in one lane. The second half of the equation uses a term that contro ls 



www.manaraa.com

 

67 

 

how far the vehicle moves relative to the centerline. This term is to give the vehicle added stability 

while maneuvering the lane change. 

 𝑀𝑜𝑡𝑜𝑟 𝑡𝑜𝑟𝑞𝑢𝑒 = 𝐺𝑎𝑖𝑛 ∗ (𝑉𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑉𝑎𝑐𝑡𝑢𝑎𝑙) (3.31) 

 

𝛿 =  𝐺𝑎𝑖𝑛1 ∗ (𝐾 − 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) +  𝐺𝑎𝑖𝑛2 ∗ (𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

− 𝐶𝑒𝑛𝑡𝑒𝑟 𝑙𝑖𝑛𝑒) 
(3.32) 

The vehicle properties used in the last section are carried over to this simulation, with the 

exception that no grade is induced. However, this simulation adds in a term for the rolling 

resistance of the tires. Rolling resistance partially accounts for the longitudinal deformation of the 

tires. Unlike many coefficients that describe tire deflection, rolling resistance is present as soon as 

the car begins to roll. Rolling resistance can be very difficult to measure experimentally, because 

it is dependent on many factors. Tire temperature, tire pressure, load, velocity, road surface, tire 

age, tire material, tire thickness, and other deflection caused by braking and cornering all have a 

part in determining the rolling resistance of a tire. An estimate of the rolling resistance of a 

passenger vehicle tire on a medium hard road is 0.08 (Gillespie, 1992). The rolling resistance is 

factored into the model for the four-wheel vehicle, and the results are shown in Figs. 3.19 to 3.22. 

Code is provided in Appendix F. 
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Figure 3.19 X-Y Plot for Lane Change 

 

Figure 3.20 State Variables for Lane Change 
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Figure 3.21 Additional State Variables for Lane Change 

 

Figure 3.22 Yaw Acceleration for Lane Change 

It is clear to see when the vehicle changes lanes, due to the spikes in the graph of torque seen in 

Fig. 3.21. If this program is used to create a controls algorithm to keep the car in a lane, different 

proportional gain constants should be chosen - this is a preliminary controls algorithm. Note that 

the torque to the rear wheels increases greatly to induce a lane change, but is fairly constant and 
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comparatively small for straight-line motion. Also note that the slip angles on the front of the car 

undergo a larger change in magnitude than the slip angles for the rear of the car (see Fig. 3.21). 

This is due to the quick step input of the steering angle given to the front wheels.  

Although the vehicle does move around a lot, the yaw rate shown in Fig. 3.20 is within 

plus or minus five radians per second. However, the yaw acceleration shown in Fig. 2.22 reaches 

a magnitude of 60 radians per second. This is extremely unsafe. For minimum complaints about 

discomfort, yaw acceleration should be kept below 0.1 radian per second squared. From about 0.07 

to 4 radians per second squared, passenger restraints become required to keep a person in place. 

Yaw accelerations greater than this will likely be very unsettling to passengers (Irwin, 1980). 

Improved controls algorithms will be needed to improve passenger comfort and safety.  

Chapter 4. VEHICLE ROLL 

Vehicle roll is important to consider to avoid unstable handling dynamics and even roll-over 

situations. This section will focus on the basics of vehicle roll and cover the determination of 

characteristic properties needed to build an accurate model. A two-wheel model will be used. 

Additional symbols needed for the roll model are shown in Table 4.1. 
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Table 4.1 Additional Symbols for Roll Model 

 

4.1 ROLL EQUATIONS OF MOTION 

In the second chapter of this thesis, a two-wheel model without roll is considered. In this chapter, 

the two-wheel model will be expanded upon to consider the effect of roll. A diagram of a vehicle 

showing yaw, pitch, and roll is shown in Fig. 4.1. The model for vehicle roll is more complicated 

than the model introduced in Chapter 2 because it must be viewed as a three-dimensional problem, 

whereas before the two-wheel model could be viewed from the x-y plane. To cover vehicle roll 

thoroughly, the acceleration in the x, y, and z directions will be calculated. Consider the velocity 

vector given in Eqn. 4.1. 

 𝑉⃑⃑ =  [
𝑉
𝑈
 

] (4.1) 

Term Symbol

Yaw

Pitch

Roll

Roll Center Coefficient

Roll Steer Coefficient

Roll Force Coefficient

Offset Coefficient

𝑟 𝑜𝑟  ̇

𝑞 𝑜𝑟 𝜃̇

  𝑜𝑟  ̇

𝐶𝛿 

𝐶𝛽

𝐶 𝑟 𝐶 𝑓

𝐶 𝑓, 𝐶 𝑟
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Figure 4.1 Vehicle Roll Model 

Consider an angular velocity vector shown in Eqn. 4.2. 

 𝜔⃑⃑⃑ =  [

 ̇

𝜃̇
 ̇
] (4.2) 

Since the body-centered coordinate system of the vehicle is rotating relative to the global 

coordinate system used to find the absolute motion of the car, the absolute acceleration of the 

vehicle must be calculated according to Eqn. 4.3. 

 
𝑑𝑉⃑⃑

𝑑𝑡
=  (

𝜕𝑉⃑⃑

𝜕𝑡
)
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒

+  𝜔 ×𝑉⃑⃑ (4.3) 

The first half of Eqn. 4.3 is evaluated in Eqn. 4.4 and the second half is evaluated in Eqn. 4.5. 

 (
𝜕𝑉⃑⃑

𝜕𝑡
)
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒

= [
𝑉̇
𝑈̇
 ̇

] (4.4) 

 𝜔 ×𝑉⃑⃑ =  |
𝑖̂ 𝑗̂ 𝑘̂

 ̇ 𝜃̇  ̇
𝑉 𝑈  

| =  𝑖̂(𝜃̇ −  ̇𝑈) −  𝑗̂( ̇ −   ̇𝑉)+  𝑘̂( ̇ −  𝜃̇𝑉) (4.5) 



www.manaraa.com

 

73 

 

Equations 4.3 through 4.5 are combined to give an equation for the acceleration in the x, y, and z 

directions as shown in Eqn. 4.6. 

 𝐴⃑ =  [

𝑉̇ +  𝜃̇ −   ̇𝑈

𝑈̇ +   ̇𝑉 −   ̇ 

 ̇ +  ̇ −  𝜃̇𝑉

] (4.6) 

The net moment applied to the vehicle’s center of gravity can be calculated in a similar manner 

using the angular momentum. First, consider the moment of inertia applied about each axis of the 

vehicle shown in Eqn. 4.7. 

 𝐼𝑡𝑜𝑡𝑎𝑙 = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] (4.7) 

The angular momentum of the vehicle is the total moment of inertia matrix (see Eqn. 4.7) times 

the angular velocity vector given in Eqn. 4.2. The result is shown in Eqn. 4.8. 

 ℒ⃑ =  [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] [

 ̇

𝜃̇
 ̇
] =  [

 ̇𝐼𝑥𝑥 + 𝜃̇𝐼𝑥𝑦 +  ̇𝐼𝑥𝑧

 ̇𝐼𝑦𝑥 + 𝜃̇𝐼𝑦𝑦 +  ̇𝐼𝑦𝑧

 ̇𝐼𝑧𝑥 + 𝜃̇𝐼𝑧𝑦 +  ̇𝐼𝑧𝑧

] =  [

ℒ𝑖
ℒ𝑗
ℒ𝑘

] (4.8) 

The moment about each axis can be found by taking the time derivative of the angular momentum 

according to Eqn. 4.3 (see Eqn. 4.9). 

 
𝑑ℒ⃑

𝑑𝑡
=  (

𝜕ℒ⃑

𝜕𝑡
)
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒

+  𝜔 ×ℒ⃑ (89) 

The first half of Eqn. 4.9 is evaluated in Eqn. 4.10 and the second half in Eqn. 4.11. 

 (
𝜕ℒ⃑

𝜕𝑡
)
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒

= [

 ̈𝐼𝑥𝑥 + 𝜃̈𝐼𝑥𝑦 +  ̈𝐼𝑥𝑧

 ̈𝐼𝑦𝑥 + 𝜃̈𝐼𝑦𝑦 +  ̈𝐼𝑦𝑧

 ̈𝐼𝑧𝑥 + 𝜃̈𝐼𝑧𝑦 +  ̈𝐼𝑧𝑧

] (4.10) 
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𝜔 ×ℒ⃑ =  [

 ̇

𝜃̇
 ̇
]  × [

ℒ𝑖
ℒ𝑗
ℒ𝑘

] =  |

𝑖̂ 𝑗̂ 𝑘̂

 ̇ 𝜃̇  ̇
ℒ𝑖 ℒ𝑗 ℒ𝑘

|

=  𝑖̂(𝜃̇ℒ𝑘 −  ̇ℒ𝑗) − 𝑗̂( ̇ℒ𝑘 −  ̇ℒ𝑖) + 𝑘̂( ̇ℒ𝑗 − 𝜃̇ℒ𝑖) 

(4.11) 

Combining Eqns. 4.10 and 4.11 and substituting in the angular moment of inertia terms from Eqn. 

4.8 yields the moments about the center of gravity shown in Eqn. 4.12. 

 

𝑑ℒ⃑

𝑑𝑡
=  𝑀⃑⃑⃑ =  [

 ̈𝐼𝑥𝑥 + 𝜃̈𝐼𝑥𝑦 +  ̈𝐼𝑥𝑧

 ̈𝐼𝑦𝑥 + 𝜃̈𝐼𝑦𝑦 +  ̈𝐼𝑦𝑧

 ̈𝐼𝑧𝑥 + 𝜃̈𝐼𝑧𝑦 +  ̈𝐼𝑧𝑧

]

+  [

𝜃(̇  ̇𝐼𝑧𝑥 + 𝜃̇𝐼𝑧𝑦 +  ̇𝐼𝑧𝑧) −   ̇( ̇𝐼𝑦𝑥 + 𝜃̇𝐼𝑦𝑦 +  ̇𝐼𝑦𝑧)

  ̇( ̇𝐼𝑥𝑥 + 𝜃̇𝐼𝑥𝑦 +  ̇𝐼𝑥𝑧) −  ̇( ̇𝐼𝑧𝑥 + 𝜃̇𝐼𝑧𝑦 +  ̇𝐼𝑧𝑧)

 ̇( ̇𝐼𝑦𝑥 + 𝜃̇𝐼𝑦𝑦 +  ̇𝐼𝑦𝑧) −  𝜃̇( ̇𝐼𝑥𝑥 + 𝜃̇𝐼𝑥𝑦 +  ̇𝐼𝑥𝑧)

] 

(4.12) 

Equation 4.12 can be simplified greatly by assuming that the products of inertia (the terms of the 

moment of inertia matrix that are not along the main diagonal) are zero because the x, y, and z 

axes are assumed to align with the principal moment of inertia axes of the car. This means that 

Eqn. 4.12 can be simplified as shown in Eqn. 4.13 (Karnopp, 2008). 

 
𝑑ℒ⃑

𝑑𝑡
=  𝑀⃑⃑⃑ =  [

 ̈𝐼𝑥𝑥
 𝜃̈𝐼𝑦𝑦

  ̈𝐼𝑧𝑧

] + [

 𝜃̇ ̇𝐼𝑧𝑧 −  ̇𝜃̇𝐼𝑦𝑦

  ̇ ̇𝐼𝑥𝑥 −  ̇ ̇𝐼𝑧𝑧
 ̇𝜃̇𝐼𝑦𝑦 − 𝜃̇ ̇𝐼𝑥𝑥

] (4.13) 

In this model, vertical movement in the z-direction and pitch rotation will not be analyzed. This 

makes the equations much easier to work with, as shown in Eqns. 4.14 and 4.15. 

 𝐴⃑ =  𝑖̂(𝑉̇ −   ̇𝑈) + 𝑗̂(𝑈̇ +   ̇𝑉) (4.14) 

 
𝑑ℒ⃑

𝑑𝑡
=  𝑀⃑⃑⃑ =  𝑖̂( ̈𝐼𝑥𝑥)+  𝑘̂( ̈𝐼𝑧𝑧) (4.15) 

Equations 4.14 and 4.15 will be used to write the equations of motion. Recall Section 2.6 where 

the lateral forces were described by the slip angle. For a vehicle with roll, the slip angles will have 
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to include the effect of roll steer. Note that some vehicles will also have camber angles. Figure 4.2 

shows how camber changes the inclination of a tire wheel. 

 

Figure 4.2 Vehicle Camber 

According to SAE J670, camber angles of a tire are considered positive if the top of the tire is 

angled away from the body of the car. Camber is needed to create a more complete model of the 

vehicle, but it is not as important as the tire slip angles discussed in Chapter 2. For a radial tire, ten 

to fifteen degrees of camber are needed to create the same effect that one degree of tire slip would 

have (Gillespie, 1992). For this reason, camber will be left out of the vehicle roll model. 

Besides camber, roll steer is also incorporated into the model. Roll steer involves the 

vehicle roll angle and the suspension geometry. When the vehicle rolls, the linkages that support 

the tire will deflect and cause deflection. This effect is called roll steer, and is an important topic 

for race car enthusiasts. Roll steer can be used to change the understeering tendencies of a vehicle 

through modifying the suspension or adding dampening features (Bastow, 1993). Specifically, if 

the vehicle roll axis is titled downwards in the front and upwards in the back when viewed from 

the left- or right-hand side of the car, the vehicle will have added understeer effects (Gillesp ie, 

1992). The roll axis of a vehicle is found by connecting a line between the instant centers of two 

planes (such as the side view and rear view of a vehicle). The instant centers are locations about 
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which linkages rotate. These points may be off of the link, or on the link itself as shown in Fig. 

4.3. 

 

Figure 4.3 Instant Center 

 Besides knowing about the roll center axis, it is important to locate the roll center height. 

For an independent suspension vehicle, the roll center is the location where lateral force can be 

applied without creating a roll moment. To find the roll center of the car, the instant centers in each 

plane (side, front, rear) of the vehicle are located. Next, a line is extended from the bottom of the 

tire to the front instant center. This is repeated in all planes, and where these lines intersect gives 

the roll center. See Fig. 4.4 for a diagram of roll center location. 

 

Figure 4.4 Roll Center 

Designing a vehicle to have a lower roll center increases turning stability, because there is a larger 

moment that must be overcome in order to allow the vehicle to roll (Milliken, 1995). In this 

chapter, it will be assumed that the roll center of the vehicle is below the center of gravity. 
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 The location of the roll center effects the body slip angle, which will now need to account 

for vehicle roll. Recall Fig. 2.19 where the body slip angles were defined using the velocity vectors 

at the rear tire, center of gravity, and front tire. The same method will be used in this chapter, as 

shown in Fig. 4.5. 

  

Figure 4.5 Roll Velocity Diagram 

Since the roll center is assumed to be below the center of gravity by an amount labeled as z, there 

will be a roll moment produced by the cross product of 𝑧 𝑘̂ ×  ̇ 𝑖̂ gives − ̇𝑧 𝑗̂. Note, however, that 

the roll center is not a fixed point. As the linkages in the suspension system move as the vehicle 

turns and does other maneuvers, the instant centers will shift and so will the roll center. Since it is 
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difficult to determine the roll center from just one accelerometer, a roll center coefficient Cβ is 

used to describe the average effect of roll center location on vehicle roll. To find this coefficient, 

accelerometers and gyroscopes would need to be placed on the linkages of the vehicle. While the 

car is driven through various turns, up hills, and at different speeds, data can be recorded and 

analyzed to find the varying positions of the roll center. Using the roll center data, a relationship 

between roll angle and roll center can be used to determine the constant Cβ. Here, a value from 

Jazar’s text will be used of -0.4 for the front tire and -0.1 for the rear.  

Another difference between Fig. 4.5 and 2.19 is the addition of roll steer angle δφ. This 

angle is assumed to be linearly related to the roll angle by a roll steer coefficient C δφ. This 

coefficient is based on the effect of roll on the direction that the tire rolls. This coefficient is not 

easy to determine experimentally because it involves many parameters. One approach would be to 

place accelerometers and gyroscopes in the center of the vehicle and at the tires. The roll angle 

would be measured by the gyroscope in the center of the car, and the direction that the tire velocity 

vector points in would be calculated from data recorded at the tire accelerometer. Using a plot of 

roll angle versus measured steering angle minus the driver-given steering angle, a relationship 

between the roll angle and induced steering angle due to roll can be determined. In Jazar’s text, a 

value of 0 to 0.01 is used. This suggests that the effect is quite small. The roll steer and roll center 

coefficients which are used to write equations for the front and rear slip angles are shown in Eqns. 

4.16 and 4.17. Note that the longitudinal velocity is assumed to be approximately equal to the total 

velocity V, an assumption also carried out in Chapter 2. 

 𝛼𝑓 = 
𝑈 + 𝑎 ̇ −  ̇𝐶𝛽

𝑉
− 𝛿 − 𝛿 = 

𝑈 + 𝑎 ̇ −   ̇𝐶𝛽

𝑉
− 𝛿 − 𝐶𝛿   (4.16) 



www.manaraa.com

 

79 

 

 𝛼𝑟 = 
𝑈 − 𝑏 ̇ −   ̇𝐶𝛽

𝑉
− 𝛿 =  

𝑈 − 𝑏 ̇ −  ̇𝐶𝛽

𝑉
− 𝐶𝛿   (4.17) 

The lateral forces on the front and rear tires will have an effect due to the slip angle as well as the 

roll angle. An additional roll force coefficient Cφ is used and is assumed to be linearly proportional 

to the roll angle. This coefficient can be experimentally determined by measuring the lateral 

acceleration of a vehicle during cornering. The roll angle of the car body can be measured by a 

gyroscope in the middle of the vehicle. A turn with very little roll can be compared to one with 

more roll to determine how the lateral force, or the lateral acceleration, increases with roll. This is 

more difficult than it may at first sound, because higher speeds would likely need to be used in 

order to make the vehicle roll more in the second case than in the first. This change in speed could 

affect the slip angle, and may cause erroneous results for the relationship between roll and lateral 

force. Jazar models a vehicle with roll using a roll force coefficient that is -3200 for the front tire 

and zero for the rear. This gives a general idea to the sensitivity that the front wheel must have to 

changes in roll. Equations 4.18 and 4.19 show the relationship between slip angle and roll angle 

on the lateral force of the front and rear tires (refer to Fig. 2.12 for background information on 

direction of lateral forces on the tires and a force diagram). 

 𝐹𝑦𝑓 = −𝐶𝛼𝑓𝛼𝑓 − 𝐶 𝑓  (4.18) 

 𝐹𝑦𝑟 = −𝐶𝛼𝑟𝛼𝑟 − 𝐶 𝑟  (4.19) 

Equations 4.18 and 4.19 are used to write equations for the sum of the forces in the x- and y-

directions (see Eqns. 4.20 and 4.21). Note that Eqn. 4.21 is based on Eqn. 2.80. 
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∑𝐹𝑦 = −𝐶𝛼𝑟𝛼𝑟 − 𝐶𝛼𝑓𝛼𝑓 − 𝐶 𝑓 − 𝐶 𝑟 = −𝐶𝛼𝑟(
𝑈 − 𝑏 ̇ −   ̇𝐶𝛽

𝑉
− 𝐶𝛿  )

−  𝐶𝛼𝑓(
𝑈+ 𝑎 ̇ −   ̇𝐶𝛽

𝑉
− 𝛿 − 𝐶𝛿  ) − 𝐶 𝑓 − 𝐶 𝑟 

= 𝑈̇ +  ̇𝑉 

(4.20) 

 ∑𝐹𝑥 = 𝑚𝑎𝑥 = 𝑚(𝑉̇ −   ̇𝑈) =  
 

𝑅
 (4.21) 

Now that the sum of the forces in the x- and y-directions has been written, the sum of the moments 

about the x- and z-axes will be discussed. The sum of the moments about the x-axis will include 

damping and stiffness effects due to the suspension. The roll stiffness is assumed to be directly 

related to the width of the vehicle and the stiffness of the front and rear suspension springs. Assume 

that the front suspension stiffness is 29 kilo-Newtons per meter, and the rear stiffness is 65 kilo-

Newtons per meter as a rough estimation (Jameslk55, 2012). The vehicle that is simulated in this 

section is the oversteered vehicle discussed in Section 2.8.4.1 with a width of 1.92 meters, a front 

mass distribution of 784 kilograms, and a rear distribution of 940 kilograms. The mass 

distributions will be used in calculating the roll damping of the vehicle, which is related to the 

width of the vehicle and the front and rear dampers (Jazar, 2008). According to Wong, vehicles 

typically have damping ratios 𝜁 between 0.2 to 0.4 (Wong, 2008). An intermediate damping ratio 

of 0.3 will be used. Equation 4.22 gives the relationship between the damping c and damping ratio 

(Rao, 2011). 

 𝜁 =  
𝑐

2√𝑘𝑚
 (4.22) 

Equation 4.22 is used to calculate the front and rear damping, as shown in Eqns. 4.23 and 4.24. 

Note that the total mass in the front and rear is divided by two. This is because the front and rear 

axles have a damper at each wheel. 



www.manaraa.com

 

81 

 

 𝑐𝑓 = 2(0.3)√(29∗ 10
3
𝑁

𝑚
)(
784

2
 𝑘𝑔) = 2.0 ∗ 103 𝑘𝑔/𝑠 (4.23) 

 𝑐𝑟 = 2(0.3)√(65∗ 10
3
𝑁

𝑚
) (
940

2
 𝑘𝑔) = 3.3 ∗ 103 𝑘𝑔/𝑠 (4.24) 

The damping and stiffness at the front and rear wheels are used to calculate the roll stiffness and 

roll damping (see Eqns. 4.25 and 4.26). 

 𝑘 = 𝑤𝑖𝑑𝑡ℎ ∗ (𝑘𝑓 +𝑘𝑟) = 1.92 𝑚 ∗ (29
𝑘𝑁

𝑚
+65

𝑘𝑁

𝑚
) = 180 𝑘𝑁  (4.25) 

 𝑐 = 𝑤𝑖𝑑𝑡ℎ ∗ (𝑐𝑓 + 𝑐𝑟) = 1.92 𝑚∗ (2.0
𝑘𝑔

𝑠
+ 3.3

𝑘𝑔

𝑠
) = 10 

𝑚 ∗ 𝑘𝑔

𝑠
 (4.26) 

The last coefficient needed for the roll model involves the effect of slip angle on the x-axis roll 

moment. The slip angles cause a lateral force on the front and rear tires, and this in turn creates a 

moment about the x-axis. This moment is assumed to be linearly proportional to the lateral force 

on the tire according to the offset coefficient CTf or CTr. The offset coefficient takes into account 

the difference in height between the center of the wheel and the roll center. This difference in 

height is affected by changes in the suspension linkages, instantaneous changes in the spring length 

as the vehicle moves over bumps in a road, and the load on the wheel. Jazar gives a value of -0.2 

to -0.4 for this coefficient. This value can be found experimentally by determining the average 

location of the roll center and the average distance from the roll center to the center of the wheel. 

Now that all of the coefficients have been discussed, the sum of the moments about the x- and z-

axes can be written as shown in Eqns. 4.27 and 4.28 (see Eqn. 2.42 to compare the sum of the 

moments about the z-axis between the two-wheel model with and without roll). 

 ∑𝑀𝑥 =  𝐶 𝑓𝐹𝑦𝑓 + 𝐶 𝑟𝐹𝑦𝑟 − 𝑘  − 𝑐  ̇ (4.27) 
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 ∑𝑀𝑧 = 𝑎𝐹𝑦𝑓 − 𝑏𝐹𝑦𝑟 (4.28) 

Note that the roll stiffness and roll damping work to oppose a positive roll moment. These terms 

work to keep the vehicle on the road. Equations 4.27 and 4.28 may be expanded using the equations 

of the lateral force (see Eqns. 4.29 and 4.30). 

 

∑𝑀𝑥 =  −𝐶 𝑓 (𝐶𝛼𝑓 (
𝑈 + 𝑎 ̇ −  ̇𝐶𝛽

𝑉
− 𝛿 − 𝐶𝛿  ) + 𝐶 𝑓 )

− 𝐶 𝑟(𝐶𝛼𝑟 (
𝑈 − 𝑏 ̇ −   ̇𝐶𝛽

𝑉
− 𝐶𝛿  ) + 𝐶 𝑟 ) − 𝑘  − 𝑐  ̇

=   ̈𝐼𝑥𝑥  

(4.29) 

 

∑𝑀𝑧 = −𝑎 (𝐶𝛼𝑓 (
𝑈 + 𝑎 ̇ −   ̇𝐶𝛽

𝑉
− 𝛿 − 𝐶𝛿  ) + 𝐶 𝑓 )

+ 𝑏 (𝐶𝛼𝑟 (
𝑈 − 𝑏 ̇ −  ̇𝐶𝛽

𝑉
− 𝐶𝛿  ) + 𝐶 𝑟 ) =  ̈𝐼𝑧𝑧  

(4.30) 

The equations of motion can be rewritten as shown in Eqns. 4.31 through 4.33. 

 

𝑈̇ = 𝑈 (
−𝐶𝛼𝑟 − 𝐶𝛼𝑓

𝑉
)+  ̇ (

𝐶𝛼𝑟𝑏 −  𝐶𝛼𝑓𝑎

𝑉
−𝑉) +  ̇ (

𝐶𝛽𝐶𝛼𝑟 + 𝐶𝛽𝐶𝛼𝑓

𝑉
)

+  (𝐶𝛼𝑟𝐶𝛿 + 𝐶𝛼𝑓𝐶𝛿 − 𝐶 𝑓 − 𝐶 𝑟) + 𝛿(𝐶𝑓) 

(4.31) 

 

 ̈ = (
−𝐶 𝑓𝐶𝛼𝑓− 𝐶 𝑟𝐶𝛼𝑟

𝑉𝐼𝑥𝑥
)𝑈 + (

−𝑎𝐶 𝑓𝐶𝛼𝑓 + 𝑏𝐶 𝑟𝐶𝛼𝑟
𝑉𝐼𝑥𝑥

)  ̇

+ (
𝐶𝛽𝐶 𝑓𝐶𝛼𝑓 +𝐶𝛽𝐶 𝑟𝐶𝛼𝑟

𝑉𝐼𝑥𝑥
−
𝐶 
𝐼𝑥𝑥
)  ̇

+ (
𝐶 𝑓𝐶𝛼𝑓𝐶𝛿 + 𝐶 𝑟𝐶𝛼𝑟𝐶𝛿 − 𝐶 𝑟𝐶 𝑟 −𝐶 𝑓𝐶 𝑓 −𝑘 

𝐼𝑥𝑥
) 

+ (
𝐶 𝑓𝐶𝛼𝑓
𝐼𝑥𝑥

)𝛿 

(4.32) 



www.manaraa.com

 

83 

 

 

 ̈ = (
𝑏𝐶𝛼𝑟 −𝑎𝐶𝛼𝑓

𝑉𝐼𝑧𝑧
)𝑈 + (

−𝑎2𝐶𝛼𝑓 − 𝑏
2𝐶𝛼𝑟

𝑉𝐼𝑧𝑧
)  ̇ + (

𝑎𝐶𝛼𝑓𝐶𝛽 − 𝑏𝐶𝛼𝑟𝐶𝛽

𝑉𝐼𝑧𝑧
)  ̇

+ (
𝑎𝐶𝛼𝑓𝐶𝛿 −𝑎𝐶 𝑓 − 𝑏𝐶𝛼𝑟𝐶𝛿 + 𝑏𝐶 𝑟

𝐼𝑧𝑧
) + (

𝑎𝐶𝛼𝑓
𝐼𝑧𝑧

) 𝛿  

(4.33) 

Terms are used to describe each of the equation’s relationship with the state variables, as shown 

in Eqns. 4.34 through 4.36. 

 𝑈̇ =
𝑌𝑈𝑈

𝑉
+  ̇ (

𝑌𝜓̇

𝑉
− 𝑉)+

𝑌 ̇  ̇

𝑉
+ 𝑌  + 𝑌𝛿𝛿 (4.34) 

  ̈ =
ℛ𝑈𝑈

𝑉
+
ℛ𝜓̇ ̇

𝑉
+  ̇(

ℛ ̇1
𝑉
− ℛ ̇2) + ℛ  +ℛ𝛿𝛿 (4.35) 

  ̈ =
𝒲𝑈𝑈

𝑉
+
𝒲𝜓̇ ̇

𝑉
+
𝒲 ̇ ̇

𝑉
+𝒲  +𝒲𝛿𝛿 (4.36) 

The terms used in Eqns. 4.34 through 4.36 are defined in Eqns. 4.37 through 4.51. 

 𝑌𝑈 = −𝐶𝛼𝑟 −𝐶𝛼𝑓  (4.37) 

 𝑌𝜓̇ = 𝐶𝛼𝑟𝑏 − 𝐶𝛼𝑓𝑎 (4.38) 

 𝑌 ̇ = 𝐶𝛽𝐶𝛼𝑟 + 𝐶𝛽𝐶𝛼𝑓 (4.39) 

 𝑌 = 𝐶𝛼𝑟𝐶𝛿 + 𝐶𝛼𝑓𝐶𝛿 − 𝐶 𝑓 − 𝐶 𝑟  (4.40) 

 𝑌𝛿 = 𝐶𝛼𝑓  (4.41) 

 ℛ𝑈 =
−𝐶 𝑓𝐶𝛼𝑓 −𝐶 𝑟𝐶𝛼𝑟

𝐼𝑥𝑥
 (4.41) 

 ℛ𝜓̇ =
−𝑎𝐶 𝑓𝐶𝛼𝑓 + 𝑏𝐶 𝑟𝐶𝛼𝑟

𝐼𝑥𝑥
 (4.42) 

 ℛ ̇1 =
𝐶𝛽𝐶 𝑓𝐶𝛼𝑓 + 𝐶𝛽𝐶 𝑟𝐶𝛼𝑟

𝐼𝑥𝑥
 (4.43) 

 ℛ ̇2 =  
𝐶 
𝐼𝑥𝑥

 (4.44) 
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 ℛ =
𝐶 𝑓𝐶𝛼𝑓𝐶𝛿 +𝐶 𝑟𝐶𝛼𝑟𝐶𝛿 − 𝐶 𝑟𝐶 𝑟 −𝐶 𝑓𝐶 𝑓− 𝑘 

𝐼𝑥𝑥
 (4.45) 

 ℛ𝛿 =
𝐶 𝑓𝐶𝛼𝑓
𝐼𝑥𝑥

 (4.46) 

 𝒲𝑈 =
𝑏𝐶𝛼𝑟 −𝑎𝐶𝛼𝑓

𝐼𝑧𝑧
 (4.47) 

 𝒲𝜓̇ =
−𝑎2𝐶𝛼𝑓 − 𝑏

2𝐶𝛼𝑟
𝐼𝑧𝑧

 (4.48) 

 𝒲 ̇ = 
𝑎𝐶𝛼𝑓𝐶𝛽 −𝑏𝐶𝛼𝑟𝐶𝛽

𝐼𝑧𝑧
 (4.49) 

 𝒲 =  
𝑎𝐶𝛼𝑓𝐶𝛿 −𝑎𝐶 𝑓 − 𝑏𝐶𝛼𝑟𝐶𝛿 + 𝑏𝐶 𝑟

𝐼𝑧𝑧
 (4.50) 

 𝒲𝛿 = 
𝑎𝐶𝛼𝑓
𝐼𝑧𝑧

 (4.51) 

These equations of motion can be written in matrix form as shown in Eqn. 4.52. 

 

[
 
 
 
𝑈̇
 ̈
 ̇

 ̈]
 
 
 

=

[
 
 
 
 
 
 
𝑌𝑈
𝑉

𝑌 ̇

𝑉
𝑌 

𝑌𝜓̇

𝑉
−𝑉

ℛ𝑈
𝑉

ℛ ̇1

𝑉
−ℛ ̇2 ℛ 

ℛ𝜓̇

𝑉
0 1 0 0
𝒲𝑈

𝑉

𝒲 ̇

𝑉
𝒲 

𝒲𝜓̇

𝑉 ]
 
 
 
 
 
 

[

𝑈
 ̇
 

 ̇

] + [

𝑌𝛿
ℛ𝛿
0
𝒲𝛿

] 𝛿 (4.52) 

Equation 4.52 and Eqn. 4.21 fully describe the system (Jazar, 2008). 

4.2 STEADY-STATE CORNERING WITH ROLL 

Roll is critical to analyze when turning. In this section, steady-state cornering will be discussed. 

For steady-state cornering, the lateral acceleration, longitudinal acceleration, angular 

accelerations, and roll rate are assumed to be zero. Note that in steady cornering, the yaw rate is 
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constant according to Eqn. 2.57. This means that the equations of motion reduce to the forms 

shown in Eqns. 4.53 to 4.55. 

 𝑈 (
𝑌𝑈
𝑉
)+

1

𝑅
(𝑌𝜓̇ − 𝑉

2)+  (𝑌 ) + 𝛿(𝑌𝛿 ) = 0 (4.53) 

 𝑈 (
ℛ𝑈
𝑉
) +

1

𝑅
ℛ𝜓̇ +  ℛ + 𝛿ℛ𝛿 = 0 (4.54) 

 𝑈 (
𝒲𝑈

𝑉
) +

1

ℛ
𝒲𝜓̇ +  𝒲 +𝛿𝒲𝛿 = 0 (4.55) 

Equations 4.53 through 4.55 can be rearranged to find relationships between the variables. The 

gain function for the inverse of the path radius versus the steering angle is shown in Eqn. 4.56. 

 
1
𝑅⁄

𝛿
=  
𝐾1
𝐾2

 (4.56) 

The constants K1 and K2 are shown in Eqns. 4.57 and 4.58. 

 𝐾1 = 
−𝑌𝑈𝒲𝛿ℛ + 𝑌𝛿𝒲𝑈ℛ − 𝑌 𝒲𝑈ℛ𝛿 + 𝑌 𝒲𝛿ℛ𝑈

𝑉𝒲 

+
𝑌𝑈ℛ𝛿 − 𝑌𝛿ℛ𝑈

𝑉
 (4.57) 

 

𝐾2 = 
𝑌𝑈ℛ𝜓̇ −𝑌𝜓̇ℛ𝑈

𝑉
−ℛ𝑈 +

ℛ 𝒲𝑈

𝒲 

+
𝑌𝑈ℛ 𝒲𝜓̇ + 𝑌 ℛ𝜓̇𝒲𝑈 − 𝑌 ℛ𝑈𝒲𝜓̇ −𝑌𝜓̇ℛ 𝒲𝑈

𝑉𝒲 

 

(4.58) 

The parameters for the oversteered, neutral steer, and understeered vehicle discussed in Chapter 2 

are used to produce a plot of Eqn. 4.56 as shown in Fig. 4.6. The steering angle starts at 0.1 radians. 

Here, the moment of inertia about the x-axis is approximated by Eqn. 4.59 (Hibbeler, 2013). 

 𝐼𝑥𝑥 = 
1

12
𝑚(𝑤𝑖𝑑𝑡ℎ)2 (4.59) 

Figure 4.6 shows that the curvature response of the oversteered vehicle decreases much more 

quickly than the understeered or neutrally-steered vehicles. This means that as the path radius R 
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decreases, the oversteered vehicle needs a larger steering angle to maintain the path compared to 

the other two vehicles. This can be seen by referring back to Eqn. 2.23, where the oversteered 

vehicle’s steering angle is greater than the Ackermann steering angle once the vehicle is brought 

up to a sufficient speed needed for slip angles to form. The neutrally-steered vehicle and the 

understeered vehicle have similar responses, which is likely because they both have the same mass. 

This gives the cars similar stiffness and moments of inertia, and similar gain functions. 

 

Figure 4.6 Curvature Response 

The next gain function analyzed is the yaw rate gain (see Eqn. 4.60). 

 
𝑉
𝑅⁄

𝛿
=  
𝑉𝐾1
𝐾2

 (4.60) 

Note that the yaw rate is constant, and equal to the longitudinal velocity divided by the path radius. 

This makes the yaw rate gain function directly related to the curvature gain function by a factor of 

V. The plot of the gain function is shown in Fig. 4.7. The steering angle starts at 0.1 radians. It is 



www.manaraa.com

 

87 

 

interesting to note the differences between Fig. 4.7 and Fig. 2.21, the yaw rate gain function for a 

two-wheel model without roll. The two-wheel model without roll shows that the oversteered 

vehicle will have increasing yaw rate, but that the oversteered vehicle has a finite yaw rate limited 

by the characteristic speed. The two-wheel model with roll acts more as a neutrally-steered vehicle, 

because it does not show evidence of a critical speed nor a characteristic speed.  

 

Figure 4.7 Yaw Rate Response 

Another useful gain function is the lateral acceleration, which is found by multiplying the yaw rate 

gain equation by the longitudinal speed as shown in Eqn. 4.61. 

 
𝑉2
𝑅⁄

𝛿
= 
𝑉2𝐾1
𝐾2

 (4.61) 

A plot of the response is shown in Fig. 4.8. Note that the starting steering angle is 0.1 radians. This 

dictates the starting point on the left-hand side of the graph. It is interesting to note that there is no 

indication of critical velocity or characteristic velocity. All three cars have similar responses, and 
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they have almost the same behavior for large values of longitudinal speed. This seems unusual, 

since the two-wheel model without roll showed large differences between the understeered and 

oversteered vehicles. This shows that it is worth investigating the roll coefficients more.  

Experimental values could be found instead of using the values in Jazar’s text, or the values could 

be fitted to the two-wheel model without roll.  

 

Figure 4.8 Lateral Acceleration Response 

Next, the body slip angle gain function will be derived. The body slip angle is equal to the lateral 

velocity divided by the longitudinal velocity at the center of gravity of the vehicle. Equations 4.62 

through 4.66 gives the body slip gain function. 

 
𝑈
𝑉⁄

𝛿
= 
𝐿3𝐿1 + 𝐿4
1 − 𝐿2𝐿3

 (4.62) 
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 𝐿1 =
𝑌 𝒲𝛿𝒲 − 𝑌𝛿𝒲 

2

𝑌𝜓̇𝒲 
2 − 𝑉𝒲 

2 − 𝑌 𝒲𝜓̇𝒲 

 (4.63) 

 𝐿2 =
𝑌 𝒲𝑈𝒲 −𝑌𝑈𝒲 

2

𝑌𝜓̇𝒲 
2 − 𝑉𝒲 

2 − 𝑌 𝒲 𝒲𝜓̇

 (4.64) 

 𝐿3 =
ℛ 𝒲𝜓̇𝒲 −ℛ𝜓̇𝒲 

2

ℛ𝑈𝒲 
2 −𝒲𝑈𝒲 ℛ 

 (4.65) 

 𝐿4 =
𝒲𝛿ℛ − ℛ𝛿𝒲 

ℛ𝑈𝒲 −𝒲𝑈ℛ 
 (4.66) 

The body slip gain function is plotted in Fig. 4.9. An initial steering angle of 0.1 radians is used. 

 

Figure 4.9 Body Slip Gain Response 

Note that the body slip angle is positive for low speeds and then becomes negative for the rest of 

the graph. This means that initially the vehicle was angled into a left-hand turn, but as the 

longitudinal speed increased the lateral speed changed directions. This means that the vehicle 
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began to move in a negative y-direction, meaning that it changed the direction it was headed in. 

Again, the oversteered, neutrally-steered, and understeered vehicles have almost the same 

response.  

 The last gain function considered is the roll gain response, shown in Eqn. 4.67 through 

4.73. 

 
 

𝛿
= 
𝑁1𝑁2 + 𝑁3
𝑁4𝑁5+ 𝑁6

 (4.67) 

  𝑁1 = 
𝒲𝛿ℛ𝑈 − ℛ𝛿𝒲𝑈

𝒲𝜓̇ℛ𝑈 − ℛ𝜓̇𝒲𝑈

 (4.68) 

 𝑁2 =
ℛ𝑈𝑌𝜓̇ − ℛ𝜓̇𝑌𝑈 − 𝑉

2ℛ𝑈

ℛ𝑈
 (4.69) 

 𝑁3 =
𝑌𝑈ℛ𝛿 − 𝑌𝛿ℛ𝑈

ℛ𝑈
 (4.70) 

 𝑁4 =
ℛ 𝒲𝑈 −𝒲 ℛ𝑈

𝒲𝜓̇ℛ𝑈 −ℛ𝜓̇𝒲𝑈

 (4.71) 

 𝑁5 = 
ℛ𝑈𝑌𝜓̇ −ℛ𝜓̇𝑌𝑈 − 𝑉

2ℛ𝑈

ℛ𝑈
 (4.72) 

 𝑁6 =
𝑌 ℛ𝑈 − 𝑌𝑈ℛ 

ℛ𝑈
 (4.73) 

The graph of the roll gain is shown in Fig. 4.10. Note that the graph for roll angle versus steering 

angle passes the small angle approximation. Only small angles of roll can be accurately represented 

by the model, and the fact that the gain becomes increasingly large is not necessarily physically 

accurate. However, it is useful to see the general trend as longitudinal speed increases. It shows 

that cars with increasing speed may be more likely to have large roll angles even if the vehicle 

only showed signs of small roll angles to begin with. Note that a negative roll angle means the 
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vehicle rolls to the left, and a positive roll angle would show the vehicle leaning out of a left-hand 

curve. 

 

Figure 4.10 Roll Gain Response 

 Throughout these gain response curves, the three vehicles show similar responses. A better 

investigation of the parameters used in the model is needed if the simulations are to be used with 

confidence. For example, the critical speed could be found from the lateral acceleration equation 

for a vehicle with roll and the coefficients adjusted to match that of a two-wheel without roll. The 

same could also be done with the characteristic speed. The critical velocity for the vehicles can be 

found by setting the denominator of the curvature gain function equal to zero and solving for the 

velocity, just as in Chapter 2. The critical velocity equation for a vehicle with roll is given by Eqn. 

4.74. 
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𝑉𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

=
𝑌 (ℛ𝑈𝒲𝜓̇ − ℛ𝜓̇𝒲𝑈) + 𝑌𝑈(−ℛ𝜓̇𝒲 −ℛ 𝒲𝜓̇)+ 𝑌𝜓̇(ℛ𝑈𝒲 +ℛ 𝒲𝑈 )

−ℛ𝑈𝒲 +ℛ 𝒲𝑈

 

(4.74) 

The characteristic velocity is found by taking the derivative of the yaw gain equation, taking the 

derivative, and setting it equal to zero. To make the gain equation easier to work with, it will be 

rewritten as shown in Eqns. 4.75 through 4.80. 

 
𝑉
𝑅⁄

𝛿
= 
𝑉𝐾1
𝐾2

=
(𝐴 +𝐵)𝑉

𝐶 + 𝐷𝑉 +𝐸
 (4.75) 

 𝐴 = 
−𝑌𝑈𝒲𝛿ℛ + 𝑌𝛿𝒲𝑈ℛ − 𝑌 𝒲𝑈ℛ𝛿 + 𝑌 𝒲𝛿ℛ𝑈

𝒲 

 (4.76) 

 𝐵 = 𝑌𝑈ℛ𝛿 − 𝑌𝛿ℛ𝑈 (4.77) 

 𝐶 = 𝑌𝑈ℛ𝜓̇ −𝑌𝜓̇ℛ𝑈  (4.78) 

 𝐷 = −ℛ𝑈 +
ℛ 𝒲𝑈

𝒲 

 (4.79) 

 𝐸 = 
𝑌𝑈ℛ 𝒲𝜓̇ +𝑌 ℛ𝜓̇𝒲𝑈 − 𝑌 ℛ𝑈𝒲𝜓̇ −𝑌𝜓̇ℛ 𝒲𝑈

𝒲 

 (4.80) 

The derivative of Eqn. 4.75 is shown in Eqn. 4.81. 

 
𝑑

𝑑𝑉
(
(𝐴+ 𝐵)𝑉

𝐶 +𝐷𝑉 + 𝐸
) = 

(𝐶 + 𝐷𝑉 +𝐸)(𝐴+ 𝐵) − (𝐴 +𝐵)𝑉𝐷

(𝐶 +𝐷𝑉 + 𝐸)2
 (4.81) 

Setting Eqn. 4.81 equal to zero and solving for the longitudinal velocity V gives Eqn. 4.82. 

 𝑉𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 = 
−𝐶𝐴− 𝐸𝐴 −𝐵𝐶 − 𝐵𝐸

𝐷𝐴 + 𝐵𝐷− 𝐴𝐷 − 𝐵𝐷
 (4.82) 

Note that the denominator of the characteristic velocity is equal to zero. This means that the 

understeered vehicle will not have a characteristic velocity or a maximum yaw rate. This is shown 

in Fig. 4.7 as the yaw rate increases without reaching a maximum value.  
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 The critical velocity of the vehicles becomes the only parameter from the two-wheel model 

without roll that can be applied to the roll model to make the roll coefficients more accurate. Note, 

however, that there are eight additional constants used in the roll model that were not used in the 

two-wheel model discussed in Chapter 2. This makes fitting the roll model to a simple two-wheel 

model very difficult. If more accurate response curves are needed, experimental testing would be 

needed to determine the unique roll parameters of the oversteered, neutrally-steered, and 

understeered vehicles. 
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Chapter 5. CONCLUSIONS 

In this thesis, three models are used to describe the motion of a vehicle. The two-wheel model is 

used to gain preliminary understanding of cornering. At low speeds, the Ackermann steering angle 

is used, and provides a useful reference point for higher speeds. For vehicles turning at greater 

speeds, a neutrally-steered vehicle has an Ackermann steering angle but an understeered vehicle 

has a larger Ackermann steering angle and an oversteered vehicle will have a smaller Ackermann 

steering angle. Besides cornering, the analysis of the acceleration of simplified understeer and  

oversteer vehicles shows that an oversteered vehicle will accelerate more quickly. The stability of 

three vehicles is considered, and the oversteered vehicle is found to have a yaw rate that can 

become unstable while the understeered vehicle remains stable. Simulations of the vehicles show 

that the oversteered vehicle will move in a larger circle than the understeered car. 

The four-wheel model was used to better understand slip angles and body-slip angles. 

Simulations show that the vehicle moves in a spiraling manner away from the starting point. The 

response varies with torque and grade. Lane change simulations show that yaw acceleration is 

large, and that passengers would benefit from a more finely-tuned controls algorithm.  

The last model used is a two-wheel model with roll. This model is limited by the lack of 

experimental data available on vehicle roll parameters. However, unlike the two-wheel model 

without roll, all vehicles showed similar behavior when roll angles are involved. Further testing is 

needed to determine parameters for the test vehicles to see if this relationship is valid.  

Throughout the discussions of the different models, three vehicles are analyzed with 

differing centers of gravity to better capture the full range of possible responses. This thesis is 

intended to give students and faculty tools to use when working with vehicle dynamics and to 

make control algorithms for vehicles easier to develop.  
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APPENDIX A 

This appendix covers the experimental procedure to find the cornering coefficient in more detail. 

In calculating the cornering coefficient, data is collected using an accelerometer and gyroscope on 

a vehicle and driving it in circles in a parking lot. Sample data from an experiment where the wheel 

angle is intended to be about three degrees and the longitudinal velocity is around eight kilometers 

per hour are shown in Figs. A.1 to A.5. Note that there is a large change in the steering angle at 

two periods in the experiment. The parking lot used for the experiment had light posts and other 

obstructions that caused changes in the intended circular path.  

 

Figure A.1 Longitudinal Speed Versus Time 
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Figure A.2 Steering Angle Versus Time 

 

 

Figure A.3 Yaw Rate Versus Time 
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Figure A.4 Lateral Acceleration Versus Time 

 

 

Figure A.5 Longitudinal Acceleration Versus Time 

In calculating the average cornering stiffness, values of the slip angle greater than ten degrees are 

not used and are filtered out of the data. However, it is interesting to look at the change in cornering 

coefficient with front and rear slip angles (see Figs. A.6 to A.7).  
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Figure A.6 Cornering Stiffness Versus Rear Slip Angle 

 

 

Figure A.7 Cornering Stiffness Versus Front Slip Angle 

It is interesting to note in both Fig. A.6 and Fig. A.7 that neither show a trend similar to that of 

Fig. 2.24 where the cornering stiffness increases with slip angle in a smooth manner. It could be 

that the theoretical model only works for small slip angles, so Fig. 2.24 may not be the best 

representation of the cornering stiffness with increasing slip angles.  
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APPENDIX B 

This appendix provides additional two-wheel simulations. Although it may seem trivial at first, it 

is important to test a code with a simple and intuitive example. Here, a zero steering angle and a 

speed of forty miles per hour will be used to test that the vehicle yaw rate is zero. When the steering 

angle is zero, Eqns. 2.2 and 2.3 show that the vehicle will move in a straight line, which is the 

expected result. Refer to Figs. B.1 and B.2, which show that the vehicles behaves as anticipated. 

 

Figure B.1 Zero Steering Angle Yaw Rate 
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Figure B.2 X-Y Displacement for Zero Steering Angle 

Next, consider a vehicle moving at twelve miles per hour with a very small steering angle of 5 

degrees. See Figs. B.3 to B.8 for the simulations for the oversteered, neutrally-steered, and 

understeered vehicles. 

 

Figure B.3 Low-Speed Oversteer X-Y Trajectory 
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Figure B.4 Low-Speed Oversteered Vehicle Yaw Rate 

 

 

Figure B.5 Low-Speed Neutral Steer Vehicle X-Y Trajectory 
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Figure B.6 Low-Speed Neutral Steer Yaw Rate 

 

 

Figure B.7 Low-Speed Understeer X-Y Trajectory 



www.manaraa.com

 

105 

 

 

Figure B.8 Low-Speed Understeer Yaw Rate 

Note that the yaw rate increases very quickly for each vehicle. This can be reduced using a controls 

algorithm. 

 The last additional case considered is for fifty-five miles per hour and a five degree steering 

angle (refer to Figs. B.9 to B.14). 

 

Figure B.9 High-Speed Oversteer X-Y Trajectory 
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Figure B.10 High-Speed Oversteer Vehicle Yaw Rate 

 

 

Figure B.11 High-Speed Neutral Steer Vehicle X-Y Trajectory 
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Figure B.12 High-Speed Neutral Steer Yaw Rate 

 

 

Figure B.13 High-Speed Understeer X-Y Trajectory 
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Figure B.14 High-Speed Understeer Yaw Rate 

Note that the yaw rate for the high-speed case is greater than that of the high-speed case. This can 

be understood by considering the relationships between the steering angle, radius of the turn, and 

velocity as shown in Eqns. 2.5 and 2.57. 
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APPENDIX C 

Appendix C gives an alternate four-wheel simulation with less torque. Consider a four-wheel car 

going around a corner with equal torque to the rear wheels of 100 Newton-meters (see Figs. C.1 

to C.4). 

 

Figure C.1 Four-Wheel Model X-Y Trajectory for 100 Nm 

 

 

Figure C.2 Four-Wheel Model Yaw Rate for 100 Nm 
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Figure C.3 Four-Wheel Model State Variables for 100 Nm 

 

 

Figure C.4 Four-Wheel Model Angles for 100 Nm 

It is interesting to note that the magnitude of the yaw rate and the radius of the trajectory of the 

vehicle are similar to the simulations in the four-wheel model section (refer to Figs. 3.11 to 3.14). 
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APPENDIX D 

Appendix D provides the code for the two-wheel model written as a MATLAB script. 

function two_wheel_model 

  

%This code solves the lateral acceleration and yaw  

%acceleration of a two-wheel vehicle. 

  

%Divide time input into a vector 

time = 100; 

tstep = 0.01; 

t = 0:tstep:time; 

  

%Initial conditions for the model 

theta0 = 0;  

rdot0 = 0;  

U0 = 0;  

x0 = 0;  

y0 = 0;  

  

%Create vector of initial conditions 

%y = zeros(5,1); 

y_0(1) = theta0; 

y_0(2) = rdot0; 
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y_0(3) = U0; 

y_0(4) = x0; 

y_0(5) = y0; 

  

%Solving the ODEs 

[~,y] = ode45(@(t,y)bikemodel(t,y),t,y_0); 

  

X_dist = y(:,4);  

Y_dist = y(:,5);  

  

%Plotting 

figure(1); 

plot(X_dist,Y_dist); 

axis square; 

xlabel('Horizontal Displacement [meters]'); 

ylabel('Vertical Displacement [meters]'); 

%xlim([-70 5]); 

  

str1 = '\bullet'; 

text(-1,0,str1); 

  

str2 = 'Start'; 

text(-15,0,str2); 
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figure(2); 

plot(t,y(:,2)); 

xlabel('Time [sec]'); 

ylabel('Yaw rate [rad/s]'); 

ylim([0 0.9]); 

  

end 

  

%--------------------------------------------------------------------- 

  

%create a function for the ODE 

%After integrating the following vector dy, we get: 

%y(1) = theta 

%y(2) = r 

%y(3) = U 

%y(4) = x 

%y(5) = y 

  

function dy = bikemodel(~,y) 

  

degrees_to_radians = pi / 180.0; 

seconds_per_hour = 60 * 60; % 60 sec/min * 60 min/hr 
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meters_per_mile = 1609.344; 

meters_per_sec = meters_per_mile / seconds_per_hour; 

g = 9.81; 

L = 2.5; 

a = 1.23; 

b = L-a; 

width = 1.6; %(m) 

m = 1450; %mass of car, (kg) 

I = (1/12)*m*( (L)^2 + width^2 ) + m*( a - b)^2; %Mass moment of inertia about z axis (kg*m^2) 

mf = m * b / L; % mass on front axle 

mr = m * a / L; % mass on rear axle 

Cf = (0.19)*0.5*mf*g*(180/pi); %Calculate front cornering coefficient; see Wong pg.36 (N/rad) 

Cr = (0.19)*0.5*mr*g*(180/pi); %Rear cornering coefficient (N/rad) 

  

d = 5 * degrees_to_radians; %convert from degrees to radians 

V = 55 * meters_per_sec; %convert from mph to m/s 

  

%Define yaw and lateral acceleration equations  

dy = zeros(size(y)); 

%define theta.dot 

dy(1) = y(2); 

%define rdot 

dy(2) = (( -Cr*b^2 - Cf*a^2 )/(I*V))*y(2) + (( -Cf*a + Cr*b)/(I*V))*y(3) + ((Cf*a)/I)*d; 
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%define udot 

dy(3) = (( Cr*b - Cf*a )/(m*V) - V)*y(2) + ((-Cr - Cf)/(m*V))*y(3) + (Cf/m)*d; 

%Translate motion into inertial coordinates (this is why we need theta) 

%define xdot 

dy(4) = -V*sin(y(1)) - y(3)*cos(y(1)); 

%define ydot 

dy(5) = -y(3)*sin(y(1)) + V*cos(y(1)); 

  

end 
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APPENDIX E 

Appendix E gives the four-wheel model code as a MATLAB script. 

function four_wheel_model 

  

%Constants  

m  = 1724;  % mass 

Cd = 0.36;   % coefficient of drag 

A  = 2.03;   % car frontal area 

g  = 9.81;  % acceleration due to gravity 

sigma = 0.2;  % grade 

a = 1.51;   % distance from center of mass to front axle 

b = 1.26;  % distance from center of mass to rear axle 

c = 1.92;  % track width; 

w = 0.5*c; % half of the track width 

H = 0.6; %height to center of gravity 

L = a+b; % total length of the vehicle 

mf = m * b / L; % mass on front axle 

mr = m * a / L; % mass on rear axle 

Cyr = 0.19*(mr)*g*(180/pi); % cornering stiffness rear tires (N/rad) 

Cyf = 0.19*(mf)*g*(180/pi); % cornering stiffness front tires (N/rad) 

rho = 1.225; % density of air 

rtire = 0.29; % radius of tire (m) 

mu = 0.8; % coefficient of friction 
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T21 = 500; % Torque to left rear tire (Nm) 

T22 = 500; % Torque to right rear tire (Nm) 

  

delta = 0.1; % Desired steering angle 

  

q0 = [0;0;0;0;0;0;0;0]; % initial state 

T = linspace(0,1,2000); % solution time mesh 

[~,q] = ode45(@cartv, T, q0); 

  

%x 

figure(1) 

subplot(4,2,1);  

plot(T, q(:,1));  

xlabel('time');  

ylabel('x'); 

  

title('State Variables'); 

  

% xdot 

subplot(4,2,2); plot(T, q(:,4)); xlabel('time'); ylabel('V');  

% y 

subplot(4,2,3); plot(T, q(:,2)); xlabel('time'); ylabel('y'); 

% ydot 
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subplot(4,2,4); plot(T, q(:,5)); xlabel('time'); ylabel('U'); 

% psi 

subplot(4,2,5); plot(T, q(:,3)); xlabel('time'); ylabel('psi') ; 

% psidot 

subplot(4,2,6); plot(T, q(:,6)); xlabel('time'); ylabel('r');  

% X 

subplot(4,2,7); plot(T, q(:,7)); xlabel('time'); ylabel('X');  

% Y 

subplot(4,2,8); plot(T, q(:,8)); xlabel('time'); ylabel('Y'); 

  

figure(2); 

plot(q(:,7),q(:,8)); 

title('X-Y Plot for Circular Path'); 

xlabel('Longitudinal Position [m]'); 

ylabel('Lateral Position [m]'); 

  

figure(3); 

plot(T,q(:,6)); 

title('Yaw Rate vs. Time'); 

xlabel('Time [sec]'); 

ylabel('Yaw Rate [rad/sec]'); 

  

N = length(T); 
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steering = zeros(N,1); 

slip11 = zeros(N,1); 

slip12 = zeros(N,1); 

slip21 = zeros(N,1); 

slip22 = zeros(N,1); 

ay = zeros(N,1); 

ax = zeros(N,1); 

  

for i = 1:N 

    % State variables 

    %x = q(i,1); % body fixed x-axis 

    %y = q(i,2); % body fixed y-axis 

    %s = q(i,3); % body yaw angle (psi) 

    xd = q(i,4); % body fixed x-axis velocity 

    yd = q(i,5); % body fixed y-axis velocity 

    sd = q(i,6); % body yaw rate (psi_dot) 

    %xx = q(i,7); % global x position of car center of mass 

    %yy = q(i,8); % global y position of car center of mass 

  

    % Drag force 

    axd = abs(xd); 

    fdrag = 0.5*rho*Cd*A*xd*axd; 
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    % Tire slip angle  

    ad = xd - w*sd; 

    abs_ad = abs(ad); 

    alpha11 = 0; 

    if abs_ad > 0  

        alpha11 = atan((yd + a*sd)/ad) - delta; 

    end 

     

    alpha21 = 0; 

    if abs_ad > 0  

        alpha21 =atan((yd - b*sd)/ad); 

    end 

     

    af = xd + w*sd; 

    abs_af = abs(af); 

    alpha12 = 0; 

    if abs_af > 0  

        alpha12 = atan((yd + a*sd)/af) - delta; 

    end 

     

    alpha22 = 0; 

    if abs_af > 0 

        alpha22 = atan((yd - b*sd)/af); 
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    end 

   

    % Tire forces 

    f11grade = 0; 

    if axd > 0 

        f11grade = -(mu*xd/axd)*(mu*H*m*g*cos(sigma) + b*m*g*cos(sigma))/(2*L);  

    end 

    f11x = -f11grade; 

    f11y = -Cyf*alpha11; 

     

    f21grade = 0; 

    if axd > 0 

        f21grade = -(mu*xd/axd)*(a*m*g*cos(sigma) - mu*H*m*g*cos(sigma))/(2*L);  

    end 

    f21x = -f21grade + T21/rtire; 

    f21y = -Cyr*alpha21; 

     

    f12grade = 0; 

    if axd > 0 

        f12grade = -(mu*xd/axd)*(mu*H*m*g*cos(sigma) + b*m*g*cos(sigma))/(2*L); 

    end 

    f12x = -f12grade; 

    f12y = -Cyf*alpha12; 
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    f22grade = 0; 

    if axd > 0 

        f22grade = -(mu*xd/axd)*(a*m*g*cos(sigma) - mu*H*m*g*cos(sigma))/(2*L); 

    end 

    f22x = -f22grade + T22/rtire; 

    f22y = -Cyr*alpha22; 

     

    steering(i) = delta; 

    slip11(i) = alpha11*180/pi; 

    slip12(i) = alpha12*180/pi; 

    slip21(i) = alpha21*180/pi; 

    slip22(i) = alpha22*180/pi; 

    ay(i) = (-xd*sd + ( f11x*sin(delta) +f12x*sin(delta) + f11y*cos(delta) + f21y + f12y*cos(delta) 

+ f22y )/m);  

    ax(i) = (f21x + f22x + f11x*cos(delta) + f12x*cos(delta) - sin(delta)*(f11y + f12y)- fdrag + 

sd*yd)/m; 

end 

  

figure(4); 

  

title('Derived Parameters from State Variables'); 
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subplot(3,2,1); plot(T, steering); xlabel('time'); ylabel('delta');  

subplot(3,2,2); plot(T, slip11); xlabel('time'); ylabel('alpha_1_1'); 

subplot(3,2,3); plot(T, slip12); xlabel('time'); ylabel('alpha_1_2');  

subplot(3,2,4); plot(T, slip21); xlabel('time'); ylabel('alpha_2_1');  

subplot(3,2,5); plot(T, slip22); xlabel('time'); ylabel('alpha_2_2');  

subplot(3,2,6); plot(T, ay); xlabel('time'); ylabel('ay');  

  

  

end 

  

%------------------------------------------------------------------------ 

% assumes: linear cornering force proportional to tire slip angle 

function qdot = cartv(~,q) 

     

% State variables 

%x = q(1,:); % body fixed x-axis 

%y = q(2,:); % body fixed y-axis 

s = q(3,:); % body yaw angle (psi) 

xd = q(4,:); % body fixed x-axis velocity 

yd = q(5,:); % body fixed y-axis velocity 

sd = q(6,:); % body yaw rate (psi_dot) 

%xx = q(7,:); % global x position of car center of mass 

%yy = q(8,:); % global y position of car center of mass 
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%Pass the constant values back through here  

%Constants  

m  = 1724;  % mass 

Cd = 0.36;   % coefficient of drag 

A  = 2.03;   % car frontal area 

g  = 9.81;  % acceleration due to gravity 

sigma = 0.2;  % grade 

a = 1.51;   % distance from center of mass to front axle 

b = 1.26;  % distance from center of mass to rear axle 

c = 1.92;  % track width; 

w = 0.5*c; % half of the track width 

H = 0.6; %height to center of gravity 

L = a+b; % total length of the vehicle 

mf = m * b / L; % mass on front axle 

mr = m * a / L; % mass on rear axle 

Cyr = 0.19*(mr)*g*(180/pi); % cornering stiffness rear tires (N/rad) 

Cyf = 0.19*(mf)*g*(180/pi); % cornering stiffness front tires (N/rad) 

rho = 1.225; % density of air 

rtire = 0.29; % radius of tire (m) 

mu = 0.8; % coefficient of friction 

T21 = 500; % Torque to left rear tire (Nm) 

T22 = 500; % Torque to right rear tire (Nm) 
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Izz = (1/12)*m*(L^2 + c^2) + m*(a-b)^2; %Moment of intertia 

  

delta = 0.1;  % Desired steering angle 

  

% Tire slip angle  

ad = xd - w*sd; 

abs_ad = abs(ad); 

alpha11 = 0; 

if abs_ad > 0  

    alpha11 = atan((yd + a*sd)/ad) - delta; 

end 

     

alpha21 = 0; 

if abs_ad > 0  

    alpha21 = atan((yd - b*sd)/ad); 

end 

     

af = xd + w*sd; 

abs_af = abs(af); 

alpha12 = 0; 

if abs_af > 0  

    alpha12 = atan((yd + a*sd)/af) - delta; 
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end 

  

alpha22 = 0; 

if abs_af > 0 

    alpha22 = atan((yd - b*sd)/af); 

end 

  

axd = abs(xd); 

  

% Tire forces 

f11grade = 0; 

if axd > 0 

    f11grade = -(mu*xd/axd)*(mu*H*m*g*cos(sigma) + b*m*g*cos(sigma))/(2*L);  

end 

f11x = -f11grade; 

f11y = -Cyf*alpha11; 

     

f21grade = 0; 

if axd > 0 

    f21grade = -(mu*xd/axd)*(a*m*g*cos(sigma) - mu*H*m*g*cos(sigma))/(2*L);  

end 

f21x = -f21grade + T21/rtire; 

f21y = -Cyr*alpha21; 
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f12grade = 0; 

if axd > 0 

    f12grade = -(mu*xd/axd)*(mu*H*m*g*cos(sigma) + b*m*g*cos(sigma))/(2*L); 

end 

f12x = -f12grade; 

f12y = -Cyf*alpha12; 

     

f22grade = 0; 

if axd > 0 

    f22grade = -(mu*xd/axd)*(a*m*g*cos(sigma) - mu*H*m*g*cos(sigma))/(2*L);  

end 

f22x = -f22grade + T22/rtire; 

f22y = -Cyr*alpha22; 

     

% Forces at center of mass 

fdrag  = 0.5*rho*Cd*A*xd*axd;   % Longitudinal drag force 

  

qdot(1,:) = xd; 

qdot(2,:) = yd; 

qdot(3,:) = sd; 

qdot(4,:) = (f21x + f22x + f11x*cos(delta) + f12x*cos(delta) - sin(delta)*(f11y + f12y)- fdrag + 

sd*yd)/m; % Sum of Forces in x-direction/m 
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qdot(5,:) = (-xd*sd + ( f11x*sin(delta) +f12x*sin(delta) + f11y*cos(delta) + f21y + 

f12y*cos(delta) + f22y )/m); %Sum of Forces in y-direction/m 

qdot(6,:) = (-f11x*cos(delta)*w + f11y*a*cos(delta) + f11x*a*sin(delta) + f11y*w*sin(delta) + 

f12x*cos(delta)*w + f12y*a*cos(delta) + f12x*a*sin(delta) - f12y*w*sin(delta) - f21x*w - f21y*b 

- f22y*b + f22x*w)/Izz; %Sum of Moments/I 

qdot(7,:) = -yd*cos(s) - xd*sin(s); % global x position of car center of mass 

qdot(8,:) = -yd*sin(s) + xd*cos(s); % global y position of car center of mass 

     

end 
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APPENDIX F 

Appendix F gives the four-wheel lane change code as a MATLAB script. 

function four_wheel_lane_change 

  

m  = 1724;  % mass 

I  = 1.74*10^(3);  % moment of inertia 

Cd = 0.36;   % coefficient of drag 

A  = 2.03;   % car frontal area 

Cr = 0.08; % rolling resistance coefficient rear tires 

Cf = Cr;    % rolling resistance coefficient front tires 

g  = 9.81;  % acceleration due to gravity 

theta = 0;  % grade 

Cyr = 1.00*10^(5);% cornering stiffness rear tires 

Cyf = 8.37*10^(4);% cornering stiffness front tires 

Cr = 0.008; % rolling resistance coefficient rear tires 

Cf = Cr;    % rolling resistance coefficient front tires 

a = 1.51;   % distance from center of mass to front axle 

b = 1.26;  % distance from center of mass to rear axle 

c = 1.92;  % track width; 

L = a+b; 

mf = m * b / L; % mass on front axle 

mr = m * a / L; % mass on rear axle 

rho = 1.225;    % density of air 
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rtire = 0.29;   % radius of tire 

Kmotor = 500; 

KIdelta = 0; 

xddesired = 26.8224; % => 60 mph 

    %car_data.xddesired = 26.8224 * 0.5; % => 30 mph 

    %car_data.xddesired = 26.8224 / 6.0; % => 10 mph 

Kdelta = 10 * xddesired / 26; 

  

q0 = [0;0;0;0;0;0;0;0;0]; % initial state 

  

T = linspace(0,600,6001)'; % solution time mesh 

  

TCRIT = [100,200,300,400,500]; % critical time points 

  

%Q = ode45('car_tv', q0, T, TCRIT); 

[~,q] = ode45(@cartv, T, q0, TCRIT); 

  

figure(1) 

  

%x 

subplot(4,2,1); plot(T, q(:,1)); xlabel('time'); ylabel('x'); 

  

%title('State Variables'); 
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% xdot 

subplot(4,2,2); plot(T, q(:,4)); xlabel('time'); ylabel('V');  

% y 

subplot(4,2,3); plot(T, q(:,2)); xlabel('time'); ylabel('y'); 

% ydot 

subplot(4,2,4); plot(T, q(:,5)); xlabel('time'); ylabel('U'); 

% psi 

subplot(4,2,5); plot(T, q(:,3)); xlabel('time'); ylabel('psi') ; 

% psidot 

subplot(4,2,6); plot(T, q(:,6)); xlabel('time'); ylabel('r');  

% X 

subplot(4,2,7); plot(T, q(:,7)); xlabel('time'); ylabel('X');  

% Y 

subplot(4,2,8); plot(T, q(:,8)); xlabel('time'); ylabel('Y'); 

  

figure(2); 

plot(q(:,7),q(:,8)); 

title('X-Y Plot for Lane Change'); 

xlabel('Longitudinal Position [m]'); 

ylabel('Lateral Position [m]'); 

  

figure(3); 
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yaw_accel = diff(q(:,6))/(0.1); 

plot(T(1:length(yaw_accel),:),yaw_accel); 

title('Yaw Acceleration'); 

xlabel('Time [sec]'); 

ylabel('Yaw Acceleration [rad/s^2]'); 

  

  

    % Model parameters 

    w = 0.5*c; 

    m1 = 0.5*mf;% mass on tire 1 

    m3 = m1;    % mass on tire 3 

    m2 = 0.5*mr;% mass on tire 2 

    m4 = m2;    % mass on tire 4 

    

  

N = length(T); 

torque1 = zeros(N,1); 

torque2 = zeros(N,1); 

steering  = zeros(N,1); 

slip1 = zeros(N,1); 

slip2 = zeros(N,1); 

slip3 = zeros(N,1); 

slip4 = zeros(N,1); 
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ay    = zeros(N,1); 

yaw_accel = zeros(N,1); 

  

for i = 1:N 

    t = T(i); 

    % State variables 

    x = q(i,1); % body fixed x-axis 

    y = q(i,2); % body fixed y-axis 

    s = q(i,3); % body yaw angle (psi) 

    xd = q(i,4); % body fixed x-axis velocity 

    yd = q(i,5); % body fixed y-axis velocity 

    sd = q(i,6); % body yaw rate (psi_dot) 

    xx = q(i,7); % global x position of car center of mass 

    yy = q(i,8); % global y position of car center of mass 

    yyerr = q(i,9); % YY-yy 

     

    axd = abs(xd); 

     

    % Drag force 

    fdrag = 0.5*rho*Cd*A*xd*axd; 

     

    % Grade force 

    fgrade = m*g*sin(theta); 
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    % Motor force based on desired longitudinal velocity   

    Kxd = Kmotor; % proportional feedback gain 

    fmotor = Kxd * (xddesired - xd); 

     

    % Desired steering angle 

    delta = 0.0;  

    Kdelta = Kdelta; 

    KIdelta = KIdelta; 

    YY = 0; 

    if (t >= 100) && (t < 200) 

        YY = 1; 

        delta = Kdelta*(YY-yy) + KIdelta*yyerr; 

     

    end 

    if (t >= 200) && (t < 300) 

        YY = -1; 

        delta = Kdelta*(YY-yy)+ KIdelta*yyerr; 

         

    end 

    if (t >= 300) 

        YY = 0; 

        delta = Kdelta*(YY-yy) + KIdelta*yyerr; 
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    end 

    if abs(delta) > 1 

        delta = sign(delta); 

    end 

     

    cdelta = cos(delta); 

    sdelta = sin(delta); 

     

    % Tire slip angles 

     

    alpha1 = 0; 

    ad = abs(xd - w*sd); 

    if ad > 0  

        alpha1 = atan((yd + a*sd)/ad) - delta; %alpha11 

    end 

     

    alpha2 = 0; 

    if ad > 0  

        alpha2 = atan((yd - b*sd)/ad);%alpha21 

    end 

     

    alpha3 = 0; 
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    ad = abs(xd + w*sd); 

    if ad > 0  

        alpha3 = atan((yd + a*sd)/ad) - delta;%alpha12 

    end 

     

    alpha4 = 0; 

    if ad > 0  

        alpha4 = atan((yd - b*sd)/ad);%alpha22 

    end 

   

    % Tire forces 

     

    f1roll = 0; 

    if axd > 0 

        f1roll = Cf*0.8*m1*g*cos(theta)*xd/axd;  

    end 

    f1x = -f1roll;%f11x 

    f1y = -Cyf*alpha1;%f11y 

     

    f2roll = 0; 

    if axd > 0 

        f2roll = Cr*0.8*m2*g*cos(theta)*xd/axd;  

    end 
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    f2x = -f2roll + fmotor*0.5;%f21x 

    f2y = -Cyr*alpha2;%f21y 

     

    f3roll = 0; 

    if axd > 0 

        f3roll = Cf*0.8*m3*g*cos(theta)*xd/axd;  

    end 

    f3x = -f3roll; %f12x 

    f3y = -Cyf*alpha3;%f12x 

     

    f4roll = 0; 

    if axd > 0 

        f4roll = Cr*0.8*m4*g*cos(theta)*xd/axd;  

    end 

    f4x = -f4roll + fmotor*0.5;%f22x 

    f4y = -Cyr*alpha4;%f22y 

     

    % Forces at center of mass 

     

    %f0x = -fdrag - fgrade; 

    %f0y = 0; 

     

    torque1(i) = 0.5*fmotor*rtire; 
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    torque2(i) = 0.5*fmotor*rtire; 

    steering(i) = delta; 

    slip1(i) = alpha1*180/pi; 

    slip2(i) = alpha2*180/pi; 

    slip3(i) = alpha3*180/pi; 

    slip4(i) = alpha4*180/pi; 

    ay(i) = (-xd*sd + (f1x*sdelta + f1y*cdelta + f3x*sdelta + f3y*cdelta + f2y + f4y )/m); 

     

    %ct = 600/(6001-1); %based on T = linspace(0,600,6001)'; % solution time mesh 

    %yaw_accel(i+1) = ( sd(i+1) - sd(i) )/ct; 

     

end 

  

figure(4); 

  

subplot(4,2,1); plot(T, torque1); xlabel('time'); ylabel('T_2_1');  

  

%title('Derived Parameters from State Variables'); 

  

subplot(4,2,2); plot(T, torque2); xlabel('time'); ylabel('T_2_2');  

subplot(4,2,3); plot(T, steering); xlabel('time'); ylabel('delta');  

subplot(4,2,4); plot(T, slip1); xlabel('time'); ylabel('alpha_1_1'); 

subplot(4,2,5); plot(T, slip2); xlabel('time'); ylabel('alpha_2_1');  
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subplot(4,2,6); plot(T, slip3); xlabel('time'); ylabel('alpha_1_2');  

subplot(4,2,7); plot(T, slip4); xlabel('time'); ylabel('alpha_2_2');  

subplot(4,2,8); plot(T, ay); xlabel('time'); ylabel('ay');  

  

  

  

end 

  

  

%------------------------------------------------------------------------ 

  

% assumes: linear cornering force proportional to tire slip angle 

% proportional longitudinal speed control 

% proportional steering control 

function qdot = cartv(t,q) 

    %global car_data 

     

    %qdot = [0; 0; 0; 0; 0; 0; 0; 0; 0]; 

     

    % State variables 

    x = q(1,:); % body fixed x-axis 

    y = q(2,:); % body fixed y-axis 

    s = q(3,:); % body yaw angle (psi) 
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    xd = q(4,:); % body fixed x-axis velocity 

    yd = q(5,:); % body fixed y-axis velocity 

    sd = q(6,:); % body yaw rate (psi_dot) 

    xx = q(7,:); % global x position of car center of mass 

    yy = q(8,:); % global y position of car center of mass 

    yyerr = q(9,:); % err between the desired Y and the global y = YY-yy 

     

    %Pass the constant values back through here  

    m  = 1724;  % mass 

    I  = 1.74*10^(3);  % moment of inertia 

    Cd = 0.36;   % coefficient of drag 

    A  = 2.03;   % car frontal area 

    Cr = 0.08; % rolling resistance coefficient rear tires 

    Cf = Cr;    % rolling resistance coefficient front tires 

    g  = 9.81;  % acceleration due to gravity 

    theta = 0;  % grade 

    Cyr = 1.00*10^(5);% cornering stiffness rear tires 

    Cyf = 8.37*10^(4);% cornering stiffness front tires 

    a = 1.51;   % distance from center of mass to front axle 

    b = 1.26;  % distance from center of mass to rear axle 

    c = 1.92;  % track width; 

    L = a+b; 

    mf = m * b / L; % mass on front axle 
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    mr = m * a / L; % mass on rear axle 

    rho = 1.225;    % density of air 

    rtire = 0.29;   % radius of tire 

    Kmotor = 500; 

    KIdelta = 0; 

    xddesired = 26.8224; % => 60 mph 

    %car_data.xddesired = 26.8224 * 0.5; % => 30 mph 

    %car_data.xddesired = 26.8224 / 6.0; % => 10 mph 

    Kdelta = 10 * xddesired / 26; 

     

     

    % Model parameters 

    w = 0.5*c; 

    m1 = 0.5*mf;% mass on tire 1 

    m3 = m1;    % mass on tire 3 

    m2 = 0.5*mr;% mass on tire 2 

    m4 = m2;    % mass on tire 4 

     

    % Motor force based on desired longitudinal velocity  

    Kxd = Kmotor; % proportional feedback gain 

    fmotor = Kxd * (xddesired - xd); 

    % motors have equal torque control 

    f2motor = 0.5*fmotor; 
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    f4motor = 0.5*fmotor; 

         

    % Desired steering angle 

    delta = 0;  

    Kdelta = Kdelta; 

    KIdelta = KIdelta; 

    YY = 0; 

    if (t >= 100) && (t < 200) 

        YY = 1; 

        delta = Kdelta*(YY-yy) + KIdelta*yyerr; 

         

    end 

    if (t >= 200) && (t < 300) 

        YY = -1; 

        delta = Kdelta*(YY-yy)+ KIdelta*yyerr; 

         

    end 

    if (t >= 300) 

        YY = 0; 

        delta = Kdelta*(YY-yy) + KIdelta*yyerr; 

         

    end 

    if abs(delta) > 1 
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        delta = sign(delta); 

    end 

     

    cdelta = cos(delta); 

    sdelta = sin(delta); 

  

    axd = abs(xd); 

    stheta = sin(theta); 

    ctheta = cos(theta); 

  

    % Tire slip angles 

     

    dd = xd - w*sd; 

    ad = abs(dd); 

     

    alpha1 = 0; 

    if ad > 0  

        alpha1 = atan((yd + a*sd)/dd) - delta; 

    end 

     

    alpha2 = 0; 

    if ad > 0  

        alpha2 = atan((yd - b*sd)/dd); 
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    end 

     

    dd = xd + w*sd; 

    ad = abs(dd); 

     

    alpha3 = 0; 

    if ad > 0  

        alpha3 = atan((yd + a*sd)/dd) - delta; 

    end 

     

    alpha4 = 0; 

    if ad > 0  

        alpha4 = atan((yd - b*sd)/dd); 

    end 

     

    % Tire forces 

     

    f1roll = 0; 

    if axd > 0 

        f1roll = Cf*0.8*m1*g*ctheta*xd/axd;  

    end 

    f1x = -f1roll; 

    f1y = -Cyf*alpha1; 
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    f2roll = 0; 

    if axd > 0 

        f2roll = Cf*0.8*m2*g*ctheta*xd/axd;  

    end 

    f2x = -f2roll + f2motor; 

    f2y = -Cyr*alpha2; 

     

    f3roll = 0; 

    if axd > 0 

        f3roll = Cr*0.8*m3*g*ctheta*xd/axd;  

    end 

    f3x = -f3roll; 

    f3y = -Cyf*alpha3; 

     

    f4roll = 0; 

    if axd > 0 

        f4roll = Cr*0.8*m4*g*ctheta*xd/axd;  

    end 

    f4x = -f4roll + f4motor; 

    f4y = -Cyr*alpha4; 

     

    % Forces at center of mass 



www.manaraa.com

 

146 

 

    fdrag  = 0.5*rho*Cd*A*xd*axd;   % Longitudinal drag force 

    fgrade = m*g*stheta;            % Longitudinal grade force 

     

    f0x = -fdrag - fgrade; 

    f0y = 0; 

     

    qdot(1,:) = xd; 

    qdot(2,:) = yd; 

    qdot(3,:) = sd; 

    qdot(4,:) = (f2x + f4x + f1x*cos(delta) + f3x*cos(delta) - sin(delta)*(f1y + f3y)- fdrag + 

sd*yd)/m; % Sum of Forces in x-direction/m 

    qdot(5,:) = (-xd*sd + (f1x*sdelta + f1y*cdelta + f3x*sdelta + f3y*cdelta + f2y + f4y )/m); 

    qdot(6,:) = (-f1x*cos(delta)*w + f1y*a*cos(delta) + f1x*a*sin(delta) + f1y*w*sin(delta) + 

f3x*cos(delta)*w + f3y*a*cos(delta) + f3x*a*sin(delta) - f3y*w*sin(delta) - f2x*w - f2y*b - 

f4y*b + f4x*w)/I; %Sum of Moments/I 

    ss = sin(s); 

    cs = cos(s); 

    qdot(7,:) = xd*cs - yd*ss; 

    qdot(8,:) = xd*ss + yd*cs; 

    qdot(9,:) = YY - yy; 

end 
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